Pandas+Matplotlib,深入浅出Python数据分析

本文深入探讨Python数据分析,结合Pandas和Matplotlib进行数据可视化,包括折线图、散布图、直方图、长条图、圆饼图和箱形图的应用,并通过美国社区调查和波士顿房屋数据集的实际案例展示数据探索技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人从17年开始学习Python和数据分析,一路走来,没有特别合适的书籍,看了不少,但是大多零零散散,文末整理了一套PythonPDF书籍教程,各位小伙伴们可以好好得学习下!

利用可视化探索图表

一、数据可视化与探索图

      数据可视化是指用图形或表格的方式来呈现数据。图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义。用户通过探索图(Exploratory Graph)可以了解数据的特性、寻找数据的趋势、降低数据的理解门槛。

二、常见的图表实例

      本章主要采用 Pandas 的方式来画图,而不是使用 Matplotlib 模块。其实 Pandas 已经把 Matplotlib 的画图方法整合到 DataFrame 中,因此在实际应用中,用户不需要直接引用 Matplotlib 也可以完成画图的工作。

1.折线图

      折线图(line chart)是最基本的图表,可以用来呈现不同栏位连续数据之间的关系。绘制折线图使用的是 plot.line() 的方法,可以设置颜色、形状等参数。在使用上,拆线图绘制方法完全继承了 Matplotlib 的用法,所以程序最后也必须调用 plt.show() 产生图,如图8.4 所示。

df_iris[['sepal length (cm)']].plot.line() 
plt.show()
ax = df[['sepal length (cm)']].plot.line(color='green',title="Demo",style='--') 
ax.set(xlabel="index", ylabel="length")
plt.show()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值