以「电商客服」为例:如何构造领域LLM微调数据集?

我们可能都思考过一个灵魂拷问:RAG和Prompt工程已经能解决很多问题了,为什么还需要做微调呢?

对于电商客服、医疗咨询等对专业度、合规性和品牌调性要求极高的场景,通用大模型会显得懂事但不够专业。🥸

如果只是想让模型临时回答几个问题,写好Prompt就够了;

但如果希望它长期、批量、稳定地遵守业务规则,并大幅降低推理成本,微调是必经之路。

这篇文章是基于电商客服这个高频、高并发、强业务逻辑的场景,拆解如何构建一个支持多轮对话、情绪识别和流程引导的高质量微调数据集。一共会分为以下三个部分~

  • 为什么需要微调
  • 如何构造高质量微调数据
  • 数据不够怎么办呢

为什么需要微调?

微调的第一步,不是急着去爬取数据,而是搞清楚为什么要微调。🧐

因为很多时候容易陷入为了微调而微调的误区。但为什么电商场景不直接用prompt或rag而用微调呢?

(1)特定风格和品牌人设

👉 Prompt很容易受模型温度和随机性影响。

多轮对话后,模型容易忘记最初的设定(比如忘记了“只能退款不能退货”的规则)。而微调是在权重层面固化了客服的「人设」和「纪律」,能保证成千上万次调用中,语气和口径的高度一致。

(2)严格的结构化输出

电商场景中,通常需要从用户对话中提取订单号、意图、情绪等信息,并输出为标准的JSON格式供API调用。

对于复杂的长对话,通用模型容易提取不全,或者输出的JSON格式出错(如逗号、引号问题),导致下游系统崩溃。

**👉 微调可以创建包含(原始对话、**目标JSON)配对的数据集,能让模型学会从非结构化文本到精确结构化JSON的映射,显著提升系统稳定性。

(3)成本与延迟的双重夹击

在电商大促期间,流量是海量的。

  • Prompt模式:每次对话都要把长长的系统提示词(System Prompt)和几个示例(Few-shot)塞进上下文。Token数多,意味着推理费用高、延迟高,影响用户体验。
  • 微调模式:模型已经“记住”了这些通用知识和话术风格。调用时,上下文极短,响应更快,且随着Token减少,边际成本显著降低。

一个推荐的组合方法

并不是说微调了就不用RAG。成熟的架构通常是:

  • 微调基座:掌握通用话术、安抚情绪、SOP流程骨架。
  • RAG(检索):处理实时变动的信息(如今天的退货政策、用户的具体订单状态)。

👉 微调是为了换取后期低成本、高一致性与可控合规;RAG是为了解决知识的时效性和长尾问题。

在电商客服场景,大部分情况会 先小规模 prompt 验证 -> 收集日志 -> 微调主模型 -> RAG+规则做补充 这样可以既快又稳,也最符合成本效益。


那么,如何构造高质量的电商客服数据集?

在电商客服场景下,一个标准的微调数据条目通常采用JSON格式,包含conversation(对话内容)、role(角色)、emotion(情绪标签)、以及context(上下文)等。👇

(虽然多轮对话本身就是上下文,但在某些需要预置背景(如订单详情已由API获取)的情况下,context字段会很有用处。)

{
"id": "dialogue_20251222_001",
"context": "场景:用户询问订单物流状态(可选)",
"conversation": [
{
"role": "用户",
"content": "你好,请问我的订单 12345 现在到哪了?",
"emotion": "焦急"
},
{
"role": "客服",
"content": "您好,我来帮您查询,请稍候。",
"emotion": "礼貌"
},
{
"role": "客服",
"content": "经查询,您的订单已离开深圳集散中心,预计明天送达。",
"emotion": "专业"
}
]
}

1、数据来源:从日志中淘金

起初拿到的数据大概率是几十万条原始的、脏乱差的客服聊天日志。那如何从这些日志中提炼出有用信息呢?

👇 这是一个标准化的pipeline:

Step 1: 筛选与切分

不是所有日志都有用。🙂‍↔️

剔除那些只有“在吗?”就没有下文的无效对话。将长达一小时的闲聊切分为聚焦于单一意图(如“查物流”或“退款”)的独立对话片段。

Step 2: 敏感信息脱敏(红线动作)

这是合规的底线。🚩

必须替换掉所有的PII(个人身份信息)。

例如:将“张三”替换为[姓名],将“138xxxx”替换为[电话]。

👉 脱敏不能破坏句子结构,要用占位符替换,而不是直接删除,否则模型会学到残缺的句式。

宁可过度脱敏,也不要冒泄露隐私的风险。

Step 3: 归一化

真实用户打字很随意。需要适度调整语句,但不能过度。

  • 纠错:明显的错别字要改(如“发货”打成“发活”)。
  • 保留风格:语气词(“啊”、“呢”)、表情符号如果能体现情绪,可以适当保留(如“亲~”),或者转换为文本描述(如 [笑脸])。
  • 统一称呼:企业侧统一为“您”,消除不同客服人员的个人口癖。

2、数据集的核心构成:单轮 vs 多轮

一个高质量的客服数据集,不能只有简单的问答。建议的比例是:单轮对话占30%-40%,多轮对话占60%-70%

(1) 单轮对话

主要用于解决无需追问的简单任务,如发票开具、政策查询。

用户: “我想查一下订单98765的物流。”
客服: “经查询,您的订单...预计明天送达。”

**👉 训练模型快速应答简单问题的能力,**强化知识准确性。

(2) 多轮对话

这是微调的重头戏。多轮对话考察的是模型「记忆历史信息」**和「**引导用户完成任务」的能力。

电商咨询往往是连续的。模型必须记住上文信息(如订单号),才能进行后续操作。

用户:“我的包裹怎么还没到?”
客服:“抱歉,请提供订单号。”
用户:“202304010001。”
客服:“查到了,目前在运输途中...”

高阶技巧:「流程引导类」对话设计

这是区分聊天机器人和业务Agent的关键。

需要构造流程引导型数据,让模型学会一步步带着用户走。

👇 一个典型场景:退换货流程

在原始日志中,经常会看到用户说“我想退货”,然后客服像挤牙膏一样问单号、问原因。在构造数据时,可以将这种引导标准化:

Round 1:
用户:商品有点问题,我想退货。
客服:很抱歉给您带来不便。请问商品还在吗?具体是什么质量问题?(安抚+确认状态)
Round 2:
用户:在的,鞋底开胶了。
客服:明白了,这属于质量问题。我们需要您的订单号来登记。(定性+索要信息)
Round 3:
用户:订单号是 202303250015。
客服:收到。接下来请您:1)将商品放入原包装;2)贴上退货码;3)交给快递员。退货码稍后短信发送给您。(指令清晰的SOP引导)

对于以上这种复杂的业务(如退货、换货、投诉),可以先画出流程图。确认问题 -> 核对信息 -> 给出方案 -> 结束语。每一轮数据都要对应流程图上的一个节点。

并且不能只造顺利的数据。还要加入用户中途反悔、没有订单号、不符合退货条件等异常分支,来训练模型的鲁棒性。

👉 通过训练这种数据,模型能学会在复杂业务流程中保持条理清晰,既引导用户,又能灵活应对中间的打断。

3、赋予灵魂:情绪识别标签的嵌入

区别于冰冷的机器,金牌客服的核心在于共情。🥰

微调是注入这种能力的最佳时机。

(1)建立情绪标签体系

在数据集中,为每一条用户消息打上情绪标签:

  • 中性:50%的场景,如正常咨询。
  • 困惑:15%的场景,用户不懂规则。
  • 不满:20%的场景,轻微抱怨,如“怎么这么慢”。
  • 愤怒:10%的场景,激烈言辞。这是训练的重点。
  • 焦急:5-10%,如“明天就要用”。
  • 满意:5%,收尾感谢。

(2)标签的嵌入方式

可以采用JSON字段嵌入:

{
"role":"用户",
"content":"我的包裹怎么还没到?!",
"emotion":"愤怒"。
}

训练时,这就是在告诉模型:“当输入带有[愤怒]特征时,你的输出应该是[安抚+高效解决]”。

👇 模型将隐式学习到:

  • 遇到愤怒 -> 先道歉,再查单。
  • 遇到焦急 -> 强调时效,使用“马上”、“立即”等词汇。
  • 遇到满意 -> 礼貌致谢,祝生活愉快。

这是提升客户满意度的秘密武器。😎


但是,数据不够怎么办?(蒸馏与增强)

在项目冷启动阶段,我们可能没有那么多真实日志。这时需要依靠合成数据数据增强

1、合成数据

方案A:专家标注(高成本、高质量)

  • **来源:**线上问答摘录(如知乎、小红书)、机构内部咨询记录。
  • **流程:**双人标注 + 主审终审。确保业务错误率 < 1%。

👉 核心场景的标准数据,用于固化模型质量。

方案B:知识蒸馏(低成本、规模化)

利用GPT-5、DeepSeek等超强模型作为教师,生成大量对话数据,再教给小模型。

比如可以让GPT扮演用户和客服,生成多样的对话。

Input: “你是一名有20年经验的资深客服...请针对电商客服处理退货场景,生成5个常见问答...”。

**👉 大致流程类似:**Query池 -> 批量Prompt -> GPT生成 -> 规则过滤(去重、去敏感词) -> 专家抽检 -> 存入训练集

有了高质量的种子数据,接下来就可以解决「量」和「泛化」的问题了~

2、数据增强策略

最常见的做法是举一反三:

  • 同义改写:用大模型把一句话变出5种说法。例如“没货了”可以改成“库存已售罄”、“暂时缺货”。
  • 情景替换:把“手机退货”的对话模板,替换实体变成“衣服退货”,修改相应的属性(如“屏幕碎了”变成“拉链坏了”)。
  • 情绪转换:把一个原本温和的咨询,改写成愤怒的质问,看看模型(或人工)如何调整回复。这能极大地丰富负面样本的数量。
  • 引入噪音:刻意加入少量拼音、拼写错误,模拟真实用户的输入环境,提高模型的抗干扰能力。

此外还要监控数据集的分布,避免数据偏科。🤕

  • 场景平衡:不能全是“退货”,要有“售前咨询”、“物流查询”、“投诉”等,比例要符合业务实际(如物流占20-30%,售后占20-25%)。
  • 情绪平衡:虽然真实场景愤怒很少,但训练集中必须超采样愤怒样本,否则模型在实战中遇到真正生气的用户会不知所措。

最后

在AI应用落地的深水区,模型往往不是瓶颈,数据才是。

构建一个行业微调模型,本质上是将专家的经验(标注数据)、公开的知识(通用语料)和模型的推理能力(蒸馏) 串联成一个闭环。

对于PM而言,掌握微调不仅仅是理解技术原理,更是掌握一种定义模型行为的能力。

理解如何用数据让模型准确地按照规定意图、风格和逻辑去服务用户。希望这个电商客服的例子可以帮助到你们~☺️

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享

👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势

想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI

1. 100+本大模型方向电子书

在这里插入图片描述

2. 26 份行业研究报告:覆盖多领域实践与趋势

报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

  • 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
  • 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
  • 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
  • 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。

3. 600+套技术大会 PPT:听行业大咖讲实战

PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

在这里插入图片描述

  • 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
  • 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
  • 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
  • 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。

二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走

想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位

面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析

2. 102 道 AI 大模型真题:直击大模型核心考点

针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题

专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:


三、路线必明: AI 大模型学习路线图,1 张图理清核心内容

刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

在这里插入图片描述

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份

不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:

👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值