“ 技术学习无非涵盖三个方面,理论,实践和应用**”**
大模型技术爆火至今已经有两年的时间了,而且大模型技术的发展潜力也不言而喻。因此,很多人打算学习大模型,但又不知道该怎么入手,因此今天就来了解一下大模型的学习路线。
丁元英说:“透视社会有三个层面,技术,制度与文化”;同样的,技术学习同样有三个层面,理论,实践和应用,三者相辅相成,缺一不可。
技术的意义在于解决问题
01 大模型技术学习的理论,实践与应用
学习大模型技术需要系统性的理论基础,实践技能以及最新的研究进展和应用场景。以下是一个大模型学习进阶路线,涵盖了理论,技术和应用等方面。
理论基础
大模型学习需要有一定的理论基础,特别是数学,机器学习,自然语言处理等方面。
数学与统计学
- 线性代数:矩阵运算,特征值,奇异值分解等
- 概率论和统计学:随机变量,概率分布,贝叶斯定理等
- 微积分:偏导数,梯度下降,最优化等
机器学习基础
- 监督学习:回归,分类,支持向量机等
- 无监督学习:聚类,降维,主成分分析等
- 深度学习基础:神经网络,反向传播,激活函数等

自然语言处理
语言模型:n-gram,Word2Vec,BERT,GPT等
序列模型:RNN,LSTM,Transformer等
大模型的核心
- 预训练模型:理解什么是预训练及其在大模型中的应用
- 自监督学习:掌握自监督学习的概念及其在预训练中的应用
- 注意力机制:深入理解注意力机制及其在Transformer架构中的作用
- 多模态学习:了解如何处理文本,图像,音视频等多模态数据
实践技能
编程语言
Python:python作为目前大模型主要的开发语言,熟悉python基础,Numpy,Pandas数据处理工具
深度学习框架
TensorFlow/PyTorch: 学习如何使用这些框架构建和训练深度学习模型
模型实现
从头实现:动手实现简单的神经网络,Transformer模型,理解模型结构和训练流程
迁移学习:使用预训练模型并进行微调,适应特定任务

大规模训练
分布式训练:学习如何在多GPU或多节点环境下进行模型训练
优化技术:理解学习率调度,梯度剪裁,模型压缩等技术
项目与实战
- 构建项目:设计和实现一个完整的大模型项目,从数据准备到模型部署
- 开源贡献:参与开源深度学习框架或大模型相关项目的开发,积累实战经验
- 挑战赛:参加如Kaggle等平台的AI挑战赛,检验自己的技术水平
前沿技术
- 生成式模型:深度研究生成式模型如GPT,DALL-E,Stable-Diffusion等
- 多模态大模型:学习如果构建和训练多模态模型,处理图像,文本,音频等多种数据
- 自监督学习:研究自监督学习的最新进展及其在大模型中的应用
- 增强学习:了解增强学习在大模型中的应用,如RLHF(通过人类反馈进行强化学习)
实际应用
应用场景:探索大模型在自然语言处理,计算机视觉,语音识别等领域的应用
案例研究:分析ChatGPT,BERT,DALL-E等实际案例,理解大模型的应用细节
开源项目:参与开源项目或复现学术论文中的模型,提升实战能力

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享!
👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势
想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI:
1. 100+本大模型方向电子书

2. 26 份行业研究报告:覆盖多领域实践与趋势
报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

- 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
- 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
- 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
- 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。
3. 600+套技术大会 PPT:听行业大咖讲实战
PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

- 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
- 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
- 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
- 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。
二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走
想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位
面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析:

2. 102 道 AI 大模型真题:直击大模型核心考点
针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题
专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:

三、路线必明: AI 大模型学习路线图,1 张图理清核心内容
刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代
L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

L5阶段:专题集丨特训篇 【录播课】

四、资料领取:全套内容免费抱走,学 AI 不用再找第二份
不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:
👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

被折叠的 条评论
为什么被折叠?



