近日,继去年5月发布首个泛自然资源行业多模态基础大模型“长城”后,数慧时空又重磅推出了超高时空分辨率气象AI大模型“微澜测天”,以强大的计算能力和智能化算法为基础,不仅拥有全球中长期气象预报能力,还基于先进的超分技术,中国区域更新最高可达到6分钟时间分辨率、1公里空间分辨率的气象数据预报,并在预报准确度、时效性和稳定性等方面表现卓越,可以更好地满足各行各业对精细化预报和微观气象的需求。
01、传统数值预报模式的局限性
目前,应对复杂的天气过程,过去几十年世界范围内主流的预测方法是借助“数值天气预报”,其主要原理是将天气的变化描述为一组偏微分方程组,利用科学家长期研究出的一套复杂数学物理模型和计算机模拟来预测未来天气情况的演变。然而,求解这些复杂方程通常速度较慢,业务上运行数值天气预报模型时需要高性能且大规模的CPU集群才能及时地产生预报结果,一些模拟甚至需要数千个节点运行几个小时才能完成。同时,这些数值模型通常包括各种物理过程的参数化,如辐射传输、云物理、地表过程等,会由于各种假设和简化不可避免地引入近似误差。
此外,要想实现高分辨率的区域性降水预报,传统的数值预报方法通常是对全球预报模式所获取的预报数据进行降尺度(类似于超分)来得到时空高分辨率的降水预报结果。这种方式除了所需计算资源多、推理速度慢以外,还有一个无法避开的问题:区域模式的启动需要进行内部计算的平衡(即spin-up),并且云也是由0开始积分,通常认为常见的区域天气预报模式需要3-6小时才能完成平衡过程,这也就导致这段时间内的降水是不太可靠的。
02、数据驱动的AI预报技术带来颠覆性变革,预报速度显著提升
近几年,AI预报技术的崛起为天气预报领域带来了颠覆性的变革,赋予了其全新的可能性。数慧时空气象AI大模型“微澜测天”紧跟这一趋势,积极融合人工智能技术,实现了从传统数值预报方法到深度学习领域的跨越。“微澜测天”大模型基于长达20年的ERA5全球再分析数据,广泛覆盖了包括温度、湿度、位势、经向风、纬向风在内的五种关键气象要素,在垂直高度上跨越了九个不同气压层,并涵盖了地球表面的海平面气压、近地面气温、风场及降水等多个

最低0.47元/天 解锁文章
225

被折叠的 条评论
为什么被折叠?



