猫狗大战遇到问题

部署运行你感兴趣的模型镜像

1、input_data.py

<ipython-input-11-216aefeda7db> in get_files(file_dir, ratio)
     44     print(n_train)
     45 
---> 46     tra_images = image_list[0:n_train]
     47     tra_labels = label_list[0:n_train]
     48     tra_labels = [int(float(i)) for i in tra_labels]

TypeError: slice indices must be integers or None or have an __index__ method

解决:n_train需要定义为int型,改成
tra_images = image_list[0:int(n_train)]

将BATCH_SIZE=2,变成3,就突然报错了

INFO:tensorflow:Error reported to Coordinator: <class 'tensorflow.python.framework.errors_impl.ResourceExhaustedError'>, OOM when allocating tensor with shape[469,469,3]
     [[Node: Cast_7 = Cast[DstT=DT_FLOAT, SrcT=DT_UINT8, _device="/job:localhost/replica:0/task:0/gpu:0"](control_dependency_9)]]
done!
---------------------------------------------------------------------------
ResourceExhaustedError                    Traceback (most recent call last)
<ipython-input-5-5c32a338b497> in <module>()
     29     finally:
     30         coord.request_stop()
---> 31     coord.join(threads)

/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/coordinator.pyc in join(self, threads, stop_grace_period_secs, ignore_live_threads)
    387       self._registered_threads = set()
    388       if self._exc_info_to_raise:
--> 389         six.reraise(*self._exc_info_to_raise)
    390       elif stragglers:
    391         if ignore_live_threads:

/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/queue_runner_impl.pyc in _run(self, sess, enqueue_op, coord)
    236           break
    237         try:
--> 238           enqueue_callable()
    239         except self._queue_closed_exception_types:  # pylint: disable=catching-non-exception
    240           # This exception indicates that a queue was closed.

/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _single_operation_run()
   1061         with errors.raise_exception_on_not_ok_status() as status:
   1062           tf_session.TF_Run(self._session, None, {}, [],
-> 1063                             target_list_as_strings, status, None)
   1064       return _single_operation_run
   1065     elif isinstance(fetches, ops.Tensor):

/usr/lib/python2.7/contextlib.pyc in __exit__(self, type, value, traceback)
     22         if type is None:
     23             try:
---> 24                 self.gen.next()
     25             except StopIteration:
     26                 return

/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/errors_impl.pyc in raise_exception_on_not_ok_status()
    464           None, None,
    465           compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466           pywrap_tensorflow.TF_GetCode(status))
    467   finally:
    468     pywrap_tensorflow.TF_DeleteStatus(status)

ResourceExhaustedError: OOM when allocating tensor with shape[469,469,3]
     [[Node: Cast_7 = Cast[DstT=DT_FLOAT, SrcT=DT_UINT8, _device="/job:localhost/replica:0/task:0/gpu:0"](control_dependency_9)]]

内存溢出了,很奇怪的事,每个batch有2个就没事,3个就不行,找找怎么解决吧。

PS:改成1个也运行失败了。改回2个也失败了。

ValueError: Variable conv1/weights already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:

  File "model.py", line 14, in inference
    initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
  File "<ipython-input-7-42a46160f22c>", line 1, in <module>
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
  File "/usr/local/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)

经过查询,和tf.Variable()与tf.get_variable()有关系,http://blog.youkuaiyun.com/u012436149/article/details/53696970有详细解释。
使用jupyter调试时,如果改变了程序,又没有初始化,接着运行就会出现重名,所以要重新运行。可能是少了向量的初始化,后续在看一看
总之,就是conv1/weights重名了

运行train.py

2017-12-20 11:24:59.519868: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-12-20 11:24:59.519910: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-12-20 11:24:59.519915: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-12-20 11:24:59.519919: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-12-20 11:24:59.519923: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-12-20 11:24:59.639131: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2017-12-20 11:24:59.639524: I tensorflow/core/common_runtime/gpu/gpu_device.cc:940] Found device 0 with properties: 
name: GeForce GTX 1050
major: 6 minor: 1 memoryClockRate (GHz) 1.493
pciBusID 0000:01:00.0
Total memory: 1.95GiB
Free memory: 16.44MiB
2017-12-20 11:24:59.639542: I tensorflow/core/common_runtime/gpu/gpu_device.cc:961] DMA: 0 
2017-12-20 11:24:59.639546: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0:   Y 
2017-12-20 11:24:59.639554: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0)
2017-12-20 11:24:59.640574: E tensorflow/stream_executor/cuda/cuda_driver.cc:924] failed to allocate 16.44M (17235968 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2017-12-20 11:24:59.676339: E tensorflow/stream_executor/cuda/cuda_driver.cc:924] failed to allocate 14.79M (15512576 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2017-12-20 11:24:59.676925: E tensorflow/stream_executor/cuda/cuda_driver.cc:924] failed to allocate 13.31M (13961472 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2017-12-20 11:24:59.677485: E tensorflow/stream_executor/cuda/cuda_driver.cc:924] failed to allocate 11.98M (12565504 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2017-12-20 11:24:59.678041: E tensorflow/stream_executor/cuda/cuda_driver.cc:924] failed to allocate 10.79M (11309056 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2017-12-20 11:24:59.678602: E tensorflow/stream_executor/cuda/cuda_driver.cc:924] failed to allocate 9.71M (10178304 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2017-12-20 11:24:59.679164: E tensorflow/stream_executor/cuda/cuda_driver.cc:924] failed to allocate 8.74M (9160704 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2017-12-20 11:25:11.154864: W tensorflow/core/common_runtime/bfc_allocator.cc:273] Allocator (GPU_0_bfc) ran out of memory trying to allocate 108.78MiB.  Current allocation summary follows.
2017-12-20 11:25:11.154966: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (256):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.154994: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (512):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155022: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (1024):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155078: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (2048):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155104: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (4096):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155128: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (8192):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155171: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (16384):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155196: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (32768):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155220: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (65536):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155241: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (131072):    Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155287: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (262144):    Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155311: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (524288):    Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155333: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (1048576):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155358: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (2097152):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155385: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (4194304):   Total Chunks: 1, Chunks in use: 0 7.06MiB allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155405: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (8388608):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155425: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (16777216):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155445: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (33554432):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155468: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (67108864):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155490: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (134217728):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155515: I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (268435456):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
2017-12-20 11:25:11.155542: I tensorflow/core/common_runtime/bfc_allocator.cc:660] Bin for 108.78MiB was 64.00MiB, Chunk State: 
2017-12-20 11:25:11.155567: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00000 of size 1280
2017-12-20 11:25:11.155586: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00500 of size 256
2017-12-20 11:25:11.155603: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00600 of size 256
2017-12-20 11:25:11.155618: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00700 of size 256
2017-12-20 11:25:11.155634: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00800 of size 256
2017-12-20 11:25:11.155651: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00900 of size 256
2017-12-20 11:25:11.155668: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00a00 of size 256
2017-12-20 11:25:11.155686: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00b00 of size 256
2017-12-20 11:25:11.155703: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00c00 of size 256
2017-12-20 11:25:11.155721: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00d00 of size 512
2017-12-20 11:25:11.155738: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a00f00 of size 256
2017-12-20 11:25:11.155755: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a01000 of size 256
2017-12-20 11:25:11.155772: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a01100 of size 512
2017-12-20 11:25:11.155789: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a01300 of size 256
2017-12-20 11:25:11.155805: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a01400 of size 256
2017-12-20 11:25:11.155823: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a01500 of size 256
2017-12-20 11:25:11.155840: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a01600 of size 256
2017-12-20 11:25:11.155856: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a01700 of size 256
2017-12-20 11:25:11.155936: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a01800 of size 1792
2017-12-20 11:25:11.155954: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a01f00 of size 256
2017-12-20 11:25:11.155971: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a02000 of size 9216
2017-12-20 11:25:11.155987: I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10206a04400 of size 256
2017-12-20 11:25:11.156005: I tensorflow/core/common_runtime/bfc_allocator.cc:687] Free at 0x10206a04500 of size 7402752
2017-12-20 11:25:11.156022: I tensorflow/core/common_runtime/bfc_allocator.cc:693]      Summary of in-use Chunks by size: 
2017-12-20 11:25:11.156045: I tensorflow/core/common_runtime/bfc_allocator.cc:696] 17 Chunks of size 256 totalling 4.2KiB
2017-12-20 11:25:11.156065: I tensorflow/core/common_runtime/bfc_allocator.cc:696] 2 Chunks of size 512 totalling 1.0KiB
2017-12-20 11:25:11.156084: I tensorflow/core/common_runtime/bfc_allocator.cc:696] 1 Chunks of size 1280 totalling 1.2KiB
2017-12-20 11:25:11.156103: I tensorflow/core/common_runtime/bfc_allocator.cc:696] 1 Chunks of size 1792 totalling 1.8KiB
2017-12-20 11:25:11.156123: I tensorflow/core/common_runtime/bfc_allocator.cc:696] 1 Chunks of size 9216 totalling 9.0KiB
2017-12-20 11:25:11.156143: I tensorflow/core/common_runtime/bfc_allocator.cc:700] Sum Total of in-use chunks: 17.2KiB
2017-12-20 11:25:11.156167: I tensorflow/core/common_runtime/bfc_allocator.cc:702] Stats: 
Limit:                    17235968
InUse:                       17664
MaxInUse:                    17664
NumAllocs:                      22
MaxAllocSize:                 9216

2017-12-20 11:25:11.156198: W tensorflow/core/common_runtime/bfc_allocator.cc:277] *___________________________________________________________________________________________________
2017-12-20 11:25:11.156248: W tensorflow/core/framework/op_kernel.cc:1148] Resource exhausted: OOM when allocating tensor of shape [222784,128] and type float
2017-12-20 11:25:11.196823: E tensorflow/core/common_runtime/executor.cc:644] Executor failed to create kernel. Resource exhausted: OOM when allocating tensor of shape [222784,128] and type float
     [[Node: local3/weights/Adam/Initializer/zeros = Const[_class=["loc:@local3/weights"], dtype=DT_FLOAT, value=Tensor<type: float shape: [222784,128] values: [0 0 0]...>, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]
Traceback (most recent call last):
  File "train.py", line 47, in <module>
    sess.run(tf.global_variables_initializer()) 
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 789, in run
    run_metadata_ptr)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 997, in _run
    feed_dict_string, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1132, in _do_run
    target_list, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1152, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: <exception str() failed>

看这种情况,像内存出了问题.
应该是GPU没有开:https://stackoverflow.com/questions/45404689/tensorflow-how-to-train-2-cnnindependent-on-2-gpus-cuda-error-out-of-memory-e

将sess = tf.Session()改为
sess_config = tf.ConfigProto()
sess_config.gpu_options.per_process_gpu_memory_fraction = 0.90
sess = tf.Session(config=sess_config)

运行后,又出现
failed to allocate 24.38M (25559040 bytes) from device: CUDA_ERROR_OUT_OF_ME
这里是因为没有指定GPU,在文件开始加上

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"

再次运行后,成功,但是只显示了第一次的训练数据step0,可能是因为GPU不足以运行,但是GTX1050的显卡不应该如此。也有可能是显卡的选择不对,因为我的笔记本有两个显卡。
但是代码上面的错误已经解决了。

使用占位符和feed_dict,报错

Step 0, train loss = 0.69, train accuracy = 50.00%
Traceback (most recent call last):
  File "train.py", line 82, in <module>
    feed_dict={X:test_images, Y:test_labels})
NameError: name 'X' is not defined

因为X,Y无定义。
http://blog.youkuaiyun.com/m0_37324740/article/details/77803694
例:
X = tf.placeholder(dtype=tf.float32, shape=[None, 784], name='X_placeholder')
Y = tf.placeholder(dtype=tf.int32, shape=[None, 10], name='Y_placeholder')

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

org.apache.http.ConnectionClosedException.class org.apache.http.ConnectionReuseStrategy.class org.apache.http.Consts.class org.apache.http.ContentTooLongException.class org.apache.http.ExceptionLogger.class org.apache.http.FormattedHeader.class org.apache.http.Header.class org.apache.http.HeaderElement.class org.apache.http.HeaderElementIterator.class org.apache.http.HeaderIterator.class org.apache.http.HttpClientConnection.class org.apache.http.HttpConnection.class org.apache.http.HttpConnectionFactory.class org.apache.http.HttpConnectionMetrics.class org.apache.http.HttpEntity.class org.apache.http.HttpEntityEnclosingRequest.class org.apache.http.HttpException.class org.apache.http.HttpHeaders.class org.apache.http.HttpHost.class org.apache.http.HttpInetConnection.class org.apache.http.HttpMessage.class org.apache.http.HttpRequest.class org.apache.http.HttpRequestFactory.class org.apache.http.HttpRequestInterceptor.class org.apache.http.HttpResponse.class org.apache.http.HttpResponseFactory.class org.apache.http.HttpResponseInterceptor.class org.apache.http.HttpServerConnection.class org.apache.http.HttpStatus.class org.apache.http.HttpVersion.class org.apache.http.MalformedChunkCodingException.class org.apache.http.MessageConstraintException.class org.apache.http.MethodNotSupportedException.class org.apache.http.NameValuePair.class org.apache.http.NoHttpResponseException.class org.apache.http.ParseException.class org.apache.http.ProtocolException.class org.apache.http.ProtocolVersion.class org.apache.http.ReasonPhraseCatalog.class org.apache.http.RequestLine.class org.apache.http.StatusLine.class org.apache.http.TokenIterator.class org.apache.http.TruncatedChunkException.class org.apache.http.UnsupportedHttpVersionException.class org.apache.http.annotation.Contract.class org.apache.http.annotation.Experimental.class org.apache.http.annotation.Obsolete.class org.apache.http.annotation.ThreadingBehavior.class org.apache.http.annotation.package-info.class org.apache.http.concurrent.BasicFuture.class org.apache.http.concurrent.Cancellable.class org.apache.http.concurrent.FutureCallback.class org.apache.http.concurrent.package-info.class org.apache.http.config.ConnectionConfig.class org.apache.http.config.Lookup.class org.apache.http.config.MessageConstraints.class org.apache.http.config.Registry.class org.apache.http.config.RegistryBuilder.class org.apache.http.config.SocketConfig.class org.apache.http.config.package-info.class org.apache.http.entity.AbstractHttpEntity.class org.apache.http.entity.BasicHttpEntity.class org.apache.http.entity.BufferedHttpEntity.class org.apache.http.entity.ByteArrayEntity.class org.apache.http.entity.ContentLengthStrategy.class org.apache.http.entity.ContentProducer.class org.apache.http.entity.ContentType.class org.apache.http.entity.EntityTemplate.class org.apache.http.entity.FileEntity.class org.apache.http.entity.HttpEntityWrapper.class org.apache.http.entity.InputStreamEntity.class org.apache.http.entity.SerializableEntity.class org.apache.http.entity.StringEntity.class org.apache.http.entity.package-info.class org.apache.http.impl.AbstractHttpClientConnection.class org.apache.http.impl.AbstractHttpServerConnection.class org.apache.http.impl.BHttpConnectionBase.class org.apache.http.impl.ConnSupport.class org.apache.http.impl.DefaultBHttpClientConnection.class org.apache.http.impl.DefaultBHttpClientConnectionFactory.class org.apache.http.impl.DefaultBHttpServerConnection.class org.apache.http.impl.DefaultBHttpServerConnectionFactory.class org.apache.http.impl.DefaultConnectionReuseStrategy.class org.apache.http.impl.DefaultHttpClientConnection.class org.apache.http.impl.DefaultHttpRequestFactory.class org.apache.http.impl.DefaultHttpResponseFactory.class org.apache.http.impl.DefaultHttpServerConnection.class org.apache.http.impl.EnglishReasonPhraseCatalog.class org.apache.http.impl.HttpConnectionMetricsImpl.class org.apache.http.impl.NoConnectionReuseStrategy.class org.apache.http.impl.SocketHttpClientConnection.class org.apache.http.impl.SocketHttpServerConnection.class org.apache.http.impl.bootstrap.HttpServer.class org.apache.http.impl.bootstrap.RequestListener.class org.apache.http.impl.bootstrap.SSLServerSetupHandler.class org.apache.http.impl.bootstrap.ServerBootstrap.class org.apache.http.impl.bootstrap.ThreadFactoryImpl.class
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值