from keras import metrics from sklearn.preprocessing import MinMaxScaler import numpy as np from keras.models import Sequential from keras.layers import LSTM, Dense,Dropout,Bidirectional,Activation,TimeDistributed import csv from sklearn.model_selection import train_test_split from pylab import* from sklearn import preprocessing from sklearn.preprocessing import MinMaxScaler import time from matplotlib import pyplot import math from random import random from sklearn.model_selection import KFold from sklearn.pipeline import Pipeline from sklearn.model_selection import cross_val_score, KFold from pylab import* from sklearn.utils import shufflei=0 j=[] data = [] X = [] indicess = [] xback =24 with open(r'D:\多云新.csv') as f: reader = csv.reader(f) for row in reader: if i == 0: i += 1
Pthon语言应用Keras实现ANN模型搭建(应用在预测)
最新推荐文章于 2025-07-17 00:43:07 发布
