AVL树( C++)

#include <iostream>
#include <queue>
using namespace std;

struct Node {
    int val;
    Node *left = nullptr;
    Node *right = nullptr;
    int factor = 0;

    Node(int i) : val(i) {};
};

class AVLTree {
public:
    void balance(Node *&node) {
        if (node->factor == 2) {
            if (node->left->factor == 1) {
                Node *temp = node->left;
                node->left = temp->right;
                node->factor = 0;
                temp->right = node;
                temp->factor = 0;
                node = temp;
            } else if (node->left->factor == -1) {
                Node *temp = node->left;
                node->left = temp->right;
                temp->right = nullptr;
                node->left->left = temp;
                node->left->factor = 1;
                if (node->left->right == nullptr) {
                    node->left->left->factor = 0;
                } else {
                    node->left->left->factor = 1;
                }
                balance(node);
            }
        } else if (node->factor == -2) {
            if (node->right->factor == -1) {
                Node *temp = node->right;
                node->right = temp->left;
                node->factor = 0;
                temp->left = node;
                temp->factor = 0;
                node = temp;
            } else if (node->right->factor == 1) {
                Node *temp = node->right;
                node->right = temp->left;
                temp->left = nullptr;
                node->right->right = temp;
                node->right->factor = -1;
                if (node->right->left == nullptr) {
                    node->right->right->factor = 0;
                } else {
                    node->right->right->factor = -1;
                }
                balance(node);
            }
        }
    }

    void insert(Node *&node, int val, bool &adjust) {
        if (node == nullptr) return;
        if (val < node->val) {
            if (node->left == nullptr) {
                Node *temp = new Node(val);
                node->left = temp;
                ++node->factor;
                //高度不变,左右平衡
                if (node->factor == 0) adjust = false;
            } else {
                insert(node->left, val, adjust);
                //回溯,调整平衡因子
                if (adjust) ++node->factor;
            }
        } else if (val > node->val) {
            if (node->right == nullptr) {
                Node *temp = new Node(val);
                node->right = temp;
                --node->factor;
                //高度不变,左右平衡
                if (node->factor == 0) adjust = false;
            } else {
                insert(node->right, val, adjust);
                //回溯,调整平衡因子
                if (adjust) --node->factor;
            }
        } else {
            perror("same value");
            exit(1);
        }
        if (node->factor == 2 || node->factor == -2) {
            balance(node);
            //不管是LL还是LR全部旋转之后的高度都是不变的,可画图验证
            adjust = false;
        }
    }

    void insert(int val) {
        bool adjust = true;
        insert(root, val, adjust);
    }

    bool remove(Node *&node, int val, bool &shorter) {
        if (node == nullptr) return false;
        if (val < node->val) {
            if (remove(node->left, val, shorter)) {
                return false;
            }
            if (shorter) {
                switch (node->factor) {
                    case 1:
                        node->factor = 0;
                        shorter = true;
                        break;
                    case -1:
                        shorter = node->right->factor != 0;
                        node->factor = -2;
                        balance(node);
                        break;
                    case 0:
                        node->factor = -1;
                        shorter = false;
                        break;
                    default:
                        break;
                }
            }
        } else if (val > node->val) {
            if (remove(node->right, val, shorter)) {
                return false;
            }
            if (shorter) {
                switch (node->factor) {
                    case 1:
                        shorter = node->left->factor != 0;
                        node->factor = 2;
                        balance(node);
                        break;
                    case -1:
                        node->factor = 0;
                        shorter = true;
                        break;
                    case 0:
                        node->factor = 1;
                        shorter = false;
                        break;
                    default:
                        break;
                }
            }
        } else {
            if (node->left == nullptr) {
                Node *temp = node;
                node = node->right;
                delete temp;
                shorter = true;
            } else if (node->right == nullptr) {
                Node *temp = node;
                node = node->left;
                delete temp;
                shorter = true;
            } else {
                Node *temp = node->right;
                while (temp->left != nullptr) {
                    temp = temp->left;
                }
                node->val = temp->val;
                remove(node->right, temp->val, shorter);
                if (shorter) {
                    switch (node->factor) {
                        case 1:
                            shorter = node->left->factor != 0;
                            node->factor = 2;
                            balance(node);
                            break;
                        case -1:
                            node->factor = 0;
                            shorter = true;
                            break;
                        case 0:
                            node->factor = 1;
                            shorter = false;
                            break;
                        default:
                            break;
                    }
                }
            }
        }
        return true;
    }

    void remove(int val) {
        bool shorter = false;
        remove(root, val, shorter);
    }

    Node *create(int arr[], int len) {
        for (int i = 0; i < len; ++i) {
            if (this->root == nullptr) {
                root = new Node(arr[i]);
            } else {
                insert(arr[i]);
            }
        }
        return root;
    }

    void level_travel() {
        queue<Node *> q;
        q.push(root);
        while (!q.empty()) {
            Node *n = q.front();
            q.pop();
            cout << n->val << " ";
            if (n->left != nullptr) {
                q.push(n->left);
            }
            if (n->right != nullptr) {
                q.push(n->right);
            }
        }
        cout << "\n";
    }

private:
    Node *root = nullptr;
};

int main() {
    int len = 10;
    int nodes[10] = { 5,13,7,9,1,3,10,15,20,25 };
    AVLTree avl;
    avl.create(nodes, len);
    avl.level_travel();
    avl.remove(15);
    avl.level_travel();
    return 0;
}

AVL是一种自平衡二叉搜索,它的每个节点存储一个键值对,且每个节点的左子和右子的高度差不超过1。这种平衡特性使得AVL在查找、插入和删除操作方面都有很好的性能表现。 下面是一个简单的AVLC++实现: ```c++ #include <iostream> using namespace std; // AVL节点 struct Node { int key; int height; Node *left; Node *right; Node(int k) : key(k), height(1), left(NULL), right(NULL) {} }; // 获取节点高度 int height(Node *node) { if (node == NULL) { return 0; } return node->height; } // 获取节点平衡因子 int balanceFactor(Node *node) { if (node == NULL) { return 0; } return height(node->left) - height(node->right); } // 更新节点高度 void updateHeight(Node *node) { node->height = max(height(node->left), height(node->right)) + 1; } // 右旋操作 Node* rightRotate(Node *node) { Node *leftChild = node->left; Node *rightChild = leftChild->right; leftChild->right = node; node->left = rightChild; updateHeight(node); updateHeight(leftChild); return leftChild; } // 左旋操作 Node* leftRotate(Node *node) { Node *rightChild = node->right; Node *leftChild = rightChild->left; rightChild->left = node; node->right = leftChild; updateHeight(node); updateHeight(rightChild); return rightChild; } // 插入节点 Node* insert(Node *node, int key) { if (node == NULL) { return new Node(key); } if (key < node->key) { node->left = insert(node->left, key); } else if (key > node->key) { node->right = insert(node->right, key); } else { return node; } updateHeight(node); int bf = balanceFactor(node); if (bf > 1) { if (balanceFactor(node->left) >= 0) { return rightRotate(node); } else { node->left = leftRotate(node->left); return rightRotate(node); } } else if (bf < -1) { if (balanceFactor(node->right) <= 0) { return leftRotate(node); } else { node->right = rightRotate(node->right); return leftRotate(node); } } return node; } // 中序遍历AVL void inOrder(Node *node) { if (node == NULL) { return; } inOrder(node->left); cout << node->key << " "; inOrder(node->right); } int main() { Node *root = NULL; root = insert(root, 10); root = insert(root, 20); root = insert(root, 30); root = insert(root, 40); root = insert(root, 50); root = insert(root, 25); inOrder(root); cout << endl; return 0; } ``` 在上面的实现中,我们使用了递归插入节点,并在插入节点后更新了节点的高度和平衡因子。当节点的平衡因子大于1或小于-1时,我们进行相应的旋转操作来保持的平衡。最后,我们在main函数中插入一些节点,并进行中序遍历来检查是否正确构建。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值