1 期望
E X 由 随 机 变 量 X 的 概 率 分 布 确 定 EX由随机变量X的概率分布确定 EX由随机变量X的概率分布确定
1.1 定义
1.1.1 离散分布
p = P { X = x } : X 为 x 的 概 率 为 p E X = ∑ k = 1 x k p k 【 后 者 绝 对 收 敛 】 p=P\{X=x\}:X为x的概率为p\\ EX=\sum_{k=1}{x_kp_k}【后者绝对收敛】 p=P{ X=x}:X为x的概率为pEX=k=1∑xkpk【后者绝对收敛】
1.1.2 连续分布
概 率 密 度 f ( x ) E X = ∫ − ∞ + ∞ x f ( x ) d x 【 后 者 绝 对 收 敛 】 概率密度f(x)\\ EX=\int_{-\infty}^{+\infty}xf(x)dx【后者绝对收敛】 概率密度f(x)EX=∫−∞+∞xf(x)dx【后者绝对收敛】
1.2 期望性质
c 为 常 数 , X , Y 为 随 机 变 量 E ( c ) = c E ( c X ) = c E ( X ) E ( X + Y ) = E X + E Y E ( X Y ) = E X ⋅ E Y 【 当 X , Y 相 互 独 立 时 】 c为常数,X, Y为随机变量\\ E(c)=c\\ E(cX)=cE(X)\\ E(X+Y)=EX+EY\\ E(XY)=EX\cdot EY【当X, Y相互独立时】 c为常数,X,Y为随机变量E(c)=cE(cX)=cE(X)E(X+Y)=EX+EYE(XY)=EX⋅EY【当X,Y相互独立时】
2 方差
随机变量X的分散程度:通过X和其期望EX的偏离程度来体现
2.1 方差定义
D ( X ) = V a r ( X ) = E [ ( X − E X ) 2 ] D(X)=Var(X)=E[(X-EX)^2] D(X)=Var(X)=E[(X−EX)2]
2.2 方差性质
c 为 常 数 , X , Y 为 随 机 变 量 D ( c ) = E [ ( c − E ( c ) ) 2 ] = E [ ( c − c ) 2 ] = 0 D ( c X ) = E [ ( c X − E ( c X ) ) 2 ] = c 2 E [ ( X − E ( X ) ) 2 ] = c 2 D ( X ) D ( X ± Y ) = D X + D Y ± E [ ( X − E X ) ( Y − E Y ) ] D ( X ± Y ) = D X + D Y 【 当 X , Y 相 互 独 立 时 , E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X ⋅ E Y = 0 】 c为常数,X, Y为随机变量\\ D(c)=E[(c-E(c))^2]=E[(c-c)^2]=0\\ D(cX)=E[(cX-E(cX))^2]=c^2E[(X-E(X))^2]=c^2D(X)\\ D(X\pm Y)=DX+DY\pm E[(X-EX)(Y-EY)]\\ D(X\pm Y)=DX+DY【当X, Y相互独立时,E[(X-EX)(Y-EY)]=E(XY)-EX\cdot EY=0】 c为常数,X,Y为随机变量D(c)=E[(c−E(c))2]=E[(c−c)2]=0D(cX)=E[(cX−E(cX))2]=c2E[(X−E(X))2]=c2D(X)D(X±Y)=DX+DY±E[(X−EX)(Y−EY)]D(X±Y)=DX+DY【当X,Y相互独立时,E[(X−EX