Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:1234567899Sample Output:
Yes 2469135798
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
string double_num(string n);
int main()
{
string n, d_num;
int key[10] = {0};
cin >> n;
for(int i=0; i<n.size(); i++)
{
key[n[i]-'0']++;
}
d_num = double_num(n);
if(d_num.size() != n.size())
{
cout << "No\n" << d_num << endl;
}
else{
for(int i=0; i<d_num.size(); i++)
{
key[d_num[i]-'0']--;
}
int flag = 1;
for(int i=0; i<10; i++)
{
if(key[i] != 0)
flag = 0;
}
if(flag)
cout << "Yes\n" << d_num << endl;
else
cout << "No\n" << d_num << endl;
}
return 0;
}
string double_num(string n)
{
int c = 0;
int temp;
string d_num;
for(int i=n.size()-1; i>=0; i--)
{
temp = n[i]-'0';
temp = (temp)*2+c;
c = temp/10;
temp %= 10;
d_num.push_back(temp+'0');
}
if(c != 0)
d_num.push_back(c+'0');
reverse(d_num.begin(), d_num.end());
return d_num;
}