一开始看到这个题的第一个想法就是写一个暴力搜索,判断每一个数选和不选两种情况,并且将满足的情况记录下来,并用一个全局变量来存储答案,但是发现纯粹的暴力会超时。因此采取了记忆化搜索,这个时候我以为可以过了:
class Solution:
def largestCombination(self, candidates: List[int]) -> int:
ans = 0
@cache
def dfs(i, cnt, s):
nonlocal ans
if s > 0:
ans = max(ans, cnt)
if i >= len(candidates): return
dfs(i + 1, cnt + 1, s & candidates[i])
dfs(i + 1, cnt, s)
dfs(0, 0, (2 ** 20) - 1)
return ans
竟然冒出来一个"内存超过限制的错误",我第一个想法就是变量定义的太大或者是递归的深度太大了,(原本应该是2的24次方,但是我试了之后还是错误,因此我侥幸改成了20,结果还是错误,但是奇怪的是,在本地运行的时候却显示可以通过,当要提交的时候发现通过不了,有无大佬可以解释一个这个现象~~~)。
于是!!!我又又又参考了灵神的代码,发现我想的还是太复杂了。题目要求说是只需要按位与的结果大于0就行了,那么只需要所有数按位与完之后有一个比特位为1就满足要求了,那么就可以进行枚举,枚举每一个位与这一位是1的所有数就是答案了(这句话有点拗口),以下是代码:
class Solution:
def largestCombination(self, candidates: List[int]) -> int:
m = max(candidates).bit_length()
# 首先找到最大的数的二进制位的长度作为标杆
# 然后枚举每一位数和这一个数在i这一位上是否是1,如果是说明加进来是符合条件的
return max(sum(x >> i & 1 for x in candidates) for i in range(m))
c++版本的:
class Solution {
public:
int largestCombination(vector<int>& candidates) {
int ans = 0;
int m = bit_width((unsigned) ranges::max(candidates));
for (int i = 0; i < m; i ++) {
int cnt = 0;
for (int x: candidates) {
if (x >> i & 1) {
cnt ++;
}
}
ans = max(ans, cnt);
}
return ans;
}
};
碰到位运算的题目,优先考虑每一位,看是否能找到思路或者规律,,然后再搜索!!!!