题目:
地上有一个m行n列的方格。一个机器人从坐标(0,0)的格子开始移动,它每次可以向左、右、上、下移动一格,但不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7=18。但它不能进入方格(35,38),因为3+5+3+8=19。请问机器人能够到达多少格子?
分析:
回溯算法经典入门例子。
/* 机器人运动范围 */
#include <iostream>
using namespace std;
int moveCountCore(int, int, int, int, int, bool*);
bool check(int, int, int, int, int, bool*);
int getDigit(int);
int moveCount(int k, int m, int n)
{
int count = 0;
bool *visited = new bool[m*n];
for (int i = 0; i < m*n; i++)
visited[i] = false;
if (k <= 0 || m <= 0 || n <= 0){
return count;
}
count = moveCountCore(k, m, n, 0, 0, visited);
delete[] visited;
return count;
}
/* */
int moveCountCore(int k, int m, int n, int i, int j, bool* visited)
{
int count = 0;
if (i < 0 || i >= m || j < 0 || j >= n || !check(k, m, n, i, j, visited)){
return count;
}
visited[i*n + j] = true; //标记节点被访问
cout << i << "," << j << endl;
count = 1 + moveCountCore(k, m, n, i, j + 1, visited) + //往右走
moveCountCore(k, m, n, i, j - 1, visited) + //往左走
moveCountCore(k, m, n, i + 1, j, visited) + //往上走
moveCountCore(k, m, n, i - 1, j, visited); //往下走
return count;
}
/* 访问格子的合法性检查 */
bool check(int k, int m, int n, int i, int j, bool* visited)
{
if (i >= 0 && i < m && j >= 0 && j < n &&
!visited[i*n + j] && getDigit(i)+getDigit(j) <= k){
return true;
}
return false;
}
/* 数位之和 */
int getDigit(int number)
{
int res = 0;
while (number){
res += number % 10;
number /= 10;
}
return res;
}
int main()
{
cout << moveCount(5, 3, 10) << endl;
}