其实我有的时候就在想,大模型都已经这么成熟了,那还要人做什么
最近我老师给我们发了一篇文章,是关于自注意力机制和转换器模型的,我在github上找了个项目
1从.ipynb文件中读取python代码
import json
# 读取 .ipynb 文件
with open('your_notebook.ipynb', 'r') as f:
notebook = json.load(f)
# 提取代码单元格
code_cells = []
for cell in notebook['cells']:
if cell['cell_type'] == 'code':
code_cells.append(''.join(cell['source']))
# 将提取的代码保存到一个 Python 文件
with open('extracted_code.py', 'w') as f:
for code in code_cells:
f.write(code + '\n')
我刚才还纳闷这个notebook文件是什么,我又输入了一个print(notebook),结果发现它就是把tansformer这个文件的内容提取到notebook里了,这个.ipynb文件是分为两种单元格的,一种是代码单元格,一种是文本单元格。这个就是筛选出来代码单元格,然后把里面的source部分,也就是代码部分提取出来,然后再保存在extracted_code.py文件里面。
2
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (
self.head_dim * heads == embed_size
), "Embedding size needs to be divisible by heads"
self.values = nn.Linear(embed_size, embed_size)
self.keys = nn.Linear(embed_size, embed_size)
self.queries = nn.Linear(embed_size, embed_size)
self.fc_out = nn.Linear(embed_size, embed_size)
def forward(self, values, keys, query, mask):
# Get number of training examples
N = query.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
values = self.values(values) # (N, value_len, embed_size)
keys = self.keys(keys) # (N, key_len, embed_size)
queries = self.queries(query) # (N, query_len, embed_size)
# Split the embedding into self.heads different pieces
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
queries = queries.reshape(N, query_len, self.heads, self.head_dim

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



