ECO375 Fall 2024 Empirical Project

Java Python ECO375 Fall 2024, Empirical Project

Research question: What was the agglomeration elasticity in the US in 2000? The agglomeration elasticity is a concept from urban economics: the elasticity of productivity with respect to population density. In this case, we will represent productivity with the average hourly wage (in 2022 USD).

Therefore, you will estimate the relationship between the log average hourly wage (lw) and the log population density (lpd).

Dataset: You are given data on 381 US cities from the 2000 Census. In addition to the two variables of interest (lw and lpd), it contains information on the demographics, education, labour market, and housing market of these cities. In designing a regression model to estimate the causal relationship of density on wages, you must carefully consider the nature of endogeneityin this context in order to motivate your choice of control variables. You can’t just include all possible controls. You can succeed  in this assignment by using OLS only, but well-argued uses of IV will be rewarded. All data is from the 2000 Census, except for 1900 population.

Requirements (also see rubric at end of document):

1) Due by DEADLINE, 11:59pm. You must use Stata for your analysis. Upload to Quercus your report, the reproducible code (in a .do file) and a log file containing the output from running your program.

Your report has to be in pdf format (save as pdf in word).

2) Your paper should contain all sections listed in the rubric.

3) Be sure not to directly include Sta ECO375 Fall 2024, Empirical Project ta output in your report. Use figures, equations, and tables to summarize your results.

4) Submit the Stata code (with comments) and a log file containing your estimation results, together with the report to Quercus. Make sure that your results can be replicated by running your code on a  different computer.

NOTE: this data is shared with permission from IPUMS. Please do not distribute it to others, and see the further note at the end of this document.

To get started, run the following commands to load the data, and confirm that your output matches the output attached.

* assuming you have navigated to the correct directory in the Stata console

use eco375asgt, clear

desc, f

summarize

reg lw lpd

Note on data:

Citation for 2000 census data:

Steven Ruggles, Sarah Flood, Matthew Sobek, Daniel Backman, Annie Chen, Grace Cooper, Stephanie Richards, Renae Rodgers, and Megan Schouweiler. IPUMS USA: Version 15.0 [dataset]. Minneapolis,

MN: IPUMS, 2024. https://doi.org/10.18128/D010.V15.0

Citation for 1900 census data:

Steven Manson, Jonathan Schroeder, David Van Riper, Katherine Knowles, Tracy Kugler, Finn

Roberts, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 18.0 [dataset]. Minneapolis, MN: IPUMS. 2023. http://doi.org/10.18128/D050.V18.0

If you are interested in using US Census data outside of this course, you can download it from usa.ipums.org and nhgis.ipums.org         

深度学习作为人工智能的关键分支,依托多层神经网络架构对高维数据进行模式识别与函数逼近,广泛应用于连续变量预测任务。在Python编程环境中,得益于TensorFlow、PyTorch等框架的成熟生态,研究者能够高效构建面向回归分析的神经网络模型。本资源库聚焦于通过循环神经网络及其优化变体解决时序预测问题,特别针对传统RNN在长程依赖建模中的梯度异常现象,引入具有门控机制的长短期记忆网络(LSTM)以增强序列建模能力。 实践案例涵盖从数据预处理到模型评估的全流程:首先对原始时序数据进行标准化处理与滑动窗口分割,随后构建包含嵌入层、双向LSTM层及全连接层的网络结构。在模型训练阶段,采用自适应矩估计优化器配合早停策略,通过损失函数曲线监测过拟合现象。性能评估不仅关注均方根误差等量化指标,还通过预测值与真实值的轨迹可视化进行定性分析。 资源包内部分为三个核心模块:其一是经过清洗的金融时序数据集,包含标准化后的股价波动记录;其二是模块化编程实现的模型构建、训练与验证流程;其三是基于Matplotlib实现的动态结果展示系统。所有代码均遵循面向对象设计原则,提供完整的类型注解与异常处理机制。 该实践项目揭示了深度神经网络在非线性回归任务中的优势:通过多层非线性变换,模型能够捕获数据中的高阶相互作用,而Dropout层与正则化技术的运用则保障了泛化能力。值得注意的是,当处理高频时序数据时,需特别注意序列平稳性检验与季节性分解等预处理步骤,这对预测精度具有决定性影响。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值