题目描述:
You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Note:
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOTallocate another 2D matrix and do the rotation.
例子:
Given input matrix = [ [1,2,3], [4,5,6], [7,8,9] ], rotate the input matrix in-place such that it becomes: [ [7,4,1], [8,5,2], [9,6,3] ]
Given input matrix = [ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6, 7], [15,14,12,16] ], rotate the input matrix in-place such that it becomes: [ [15,13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7,10,11] ]
分析:
题意:给定一个代表图片的n x n二维矩阵,返回它顺时针旋转90°之后的结果。要求空间复杂度为O(1)。 思路:这是一道几何数学题,考察顺时针、逆时针旋转θ°的计算公式。我们这里运用三角函数的二角和差公式进行现场推导。
1 2 3 7 8 9 7 4 1
4 5 6 → 4 5 6 → 8 5 2
7 8 9 1 2 3 9 6 3
② 同理,遇到逆时针旋转90°,我们可以采用类似的方法:Ⅰ. 对于二维矩阵,先以列为单位,进行反转;Ⅱ. 以元素为单位,进行转置运算。如以下例子所示:
1 2 3 3 2 1 3 6 9
4 5 6 → 6 5 4 → 2 5 8
7 8 9 9 8 7 1 4 7
③ 如果遇到更一般的情况,那就必须用旋转公式进行计算了。
代码:
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
// Exceptional Case:
if(n == 0){
return;
}
reverse(matrix.begin(), matrix.end());
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
swap(matrix[i][j], matrix[j][i]);
}
}
}
};