0117 1700

header
content
footer

在这里插入图片描述

管段号* 611A-FW-0318-001 611A-GW-0178-004 611A-PW-0124-001 611A-SA-0005-001 611A-SA-0005-002 611A-SA-0005-003 611A-SA-0024-001 611B-FW-0260-005 612A-FW-0383-002 612A-PW-0121-001 612A-PW-0826-002 612A-SA-0025-001 612A-SA-0027-001 612A-SA-0609-002 612B-DA-0546-001 612B-DA-0546-002 612B-SP-0018-001 613A-ACE-7001-001 613A-ACE-7001-002 613A-ACE-7001-003 613A-ACE-7001-004 613A-ACE-7001-005 613A-ACE-7001-006 613A-ACE-7001-007 613A-ACE-7001-008 613A-ACE-7001-009 613A-ACE-7001-010 613A-ACE-7001-011 613A-ACE-7001-012 613A-ACE-7001-013 613A-ACE-7001-015 613A-ACE-7002-001 613A-ACE-7002-006 613A-AR-7001-002 613A-AR-7001-003 613A-AR-7001-004 613A-AR-7001-005 613A-AR-7001-006 613A-AR-7001-008 613A-AR-7001-009 613A-AR-7001-010 613A-AR-7001-011 613A-AR-7001-012 613A-AR-7002-001 613A-AR-7002-002 613A-ARG-7001-013 613A-ARG-7001-014 613A-ARG-7001-015 613A-ARG-7001-016 613A-ARG-7002-003 613A-BG-7002-001 613A-BG-7002-002 613A-BG-7002-003 613A-BG-7002-004 613A-BG-7002-005 613A-BG-7002-006 613A-BG-7002-007 613A-BG-7002-008 613A-BG-7002-009 613A-BG-7002-010 613A-BG-7002-011 613A-BG-7003-001 613A-BG-7003-002 613A-BG-7003-003 613A-BG-7003-004 613A-BG-7004-001 613A-BG-7004-002 613A-BG-7004-003 613A-DA-0595-001 613A-DA-0595-004 613A-DA-0595-005 613A-DA-0595-006 613A-DA-6568-002 613A-DA-6575-001P 613A-DA-6575-002 613A-DA-6575-003H 613A-DA-6575-005 613A-DA-6579-002 613A-FW-0100-002P 613A-FW-0100-005 613A-GW-0059-002 613A-GW-0059-003 613A-GW-0341-001 613A-GW-0341-004 613A-GW-0342-001 613A-GW-0342-004 613A-GW-0346-001 613A-GW-0346-003 613A-GW-0442-002 613A-HE-7001-001 613A-HE-7001-002 613A-HE-7001-003 613A-HE-7001-004 613A-HE-7001-005 613A-HE-7001-006 613A-HE-7001-007 613A-HE-7001-009 613A-HE-7001-010 613A-HE-7001-011 613A-HE-7001-012 613A-HE-7001-013 613A-HE-7001-014 613A-HE-7001-015 613A-HE-7001-016 613A-HE-7001-017 613A-HE-7002-001 613A-HE-7002-002 613A-HE-7002-003 613A-O2-7001-001 613A-O2-7001-002 613A-O2-7001-003 613A-O2-7001-004 613A-O2-7001-006 613A-O2-7001-007 613A-O2-7001-008 613A-O2-7002-001 613A-O2-7002-002 613A-O2-7002-003 613A-O2-7002-005 613A-O2-7002-008 613A-PW-0005-006 613A-PW-0005-007 613A-PW-0006-001P 613A-PW-0142-004P 613A-PW-0142-005 613A-PW-0521-001 613A-SA-0091-002 613A-SA-0091-003 613A-SA-0091-004P 613A-SA-0178-001 613A-SA-0178-004 613A-SA-0721-002 613B-DO-0003-001W 613B-DO-0003-007 613B-DO-0012-009 613B-DO-0012-011 613B-GW-0319-001 613B-GW-0324-001 613B-GW-0324-002 613B-GW-0325-001 613B-GW-0325-002 613B-GW-0326-001 613B-GW-0326-002 613B-GW-0335-003 613B-GW-0453-001 613B-GW-0453-002 621B-DA-6501-002P 621B-DA-6501-003 621B-DA-6507-005 621B-FW-0249-001P 621B-IA-0022-002 621B-IA-0022-003 621B-IA-0022-008 621B-IA-0022-009 621B-IA-0046-002 621B-IA-0046-003 621B-IA-0046-004 622A-GW-0011-001 622A-GW-0011-002 622B-FW-0249-005W 623A-GW-0390-003H 623B-FW-0058-001 623B-FW-0058-002 623B-FW-0059-001 623B-FW-0059-002 623B-FW-0423-001 623B-FW-0423-002 623B-GW-0014-003P 631-CHW-0118-003 631-DA-3197-001W 631-DA-3197-002 631-FW-0376-001 631-PW-0101-004 631-W-0521-001W 631-W-0521-009W 632-CHW-0120-002 632-CHW-0120-010 632-DA-3199-002 632-DA-3199-003 632-DA-3199-004 632-SA-0056-002 632-W-0388-002 632-W-0525-001 633-CHW-0002-001 633-CHW-0027-001 633-CHW-0027-005 633-FW-0350-004 633-FW-0442-001W 633-IA-0169-001 633-IA-0169-002 633-IA-0169-003 633-PW-0099-008 633-W-0060-002 633-W-0077-002P 633-W-0077-005 633-W-0078-001 633-W-0078-002 634-FW-0443-001W 634-FW-0452-002 635B-GW-0476-001 635B-GW-0477-001 637-DA-6597-001 637-FW-0058-001H 637-FW-0058-002 637-FW-0059-001H 637-FW-0059-002 637-FW-0385-001 637-FW-0423-001 637-FW-0423-002H 637-PW-0140-001 641A-FW-0449-003P 641A-FW-0449-004 641A-FW-0449-007W 641A-FW-0449-008 642A-CHW-0027-001 643B-DA-3190-001 643B-DA-3190-002 651-DA-0775-001 651-DA-0775-002 651-DA-0775-003 651-DA-0775-003P 651-FL-0010-001 651-FW-0032-003 651-FW-0032-004W 651-IA-0024-002 651-IA-0024-003 651-IA-0024-006 651-IA-0033-004 651-IA-0035-002 651-W-0525-004 651-W-0525-005 651-W-0525-007 652-CHW-0110-001P 652-CHW-0117-002 652-W-0078-001 652-W-0134-005 652-W-0134-007 652-W-0388-005 652-W-0388-006W 652-W-0388-007 652-W-0701-001 653-CHW-0113-006 653-CHW-0192-012 653-DA-0776-001 653-DA-0776-002 653-DA-0776-003P 653-DA-5188-001 653-DA-5188-002 653-DA-5188-003 653-FL-0022-001 653-FW-0045-003 653-IA-0050-002 653-W-0060-001 662B-PW-0140-001 662B-PW-0140-002 663A-FW-0291-001P 663A-FW-0291-003 663B-PW-0140-003 671A-PW-0140-005 671A-PW-0140-006W 671A-PW-0140-009 672A-CHW-0193-004 672A-CHW-0194-003 672A-CHW-0195-003 672A-CHW-0195-006 672A-CHW-0196-003 672A-CHW-0198-002 672A-CHW-0200-002 672A-CHW-0209-016 672A-CHW-0283-001W 672A-CHW-0283-007 672A-CHW-0283-011 672A-CHW-0283-013 672A-CHW-0283-017 672A-CHW-0283-018 672A-CHW-0284-008 672A-DA-3368-001W 672A-DA-3368-004 672A-DA-3368-005 672A-FW-0446-003P 672A-FW-0446-004 672A-W-0078-005 672A-W-0078-006 672A-W-0078-009 672A-W-0078-020 672-CHW-0284-001 672-CHW-0284-002 672-CHW-0284-004 673A-FL-0037-001 673A-FL-0037-003 673A-FL-0037-004 673A-FL-0038-001 673A-FL-0038-003W 673A-FL-0039-001 673A-FL-0039-002W 673A-FL-0039-006 673A-FL-0039-007 673A-FL-0140-003 673A-FL-0140-004 673A-FW-0059-001 673A-FW-0059-002W 673A-FW-0388-004 673B-FL-0037-004 673B-FL-0037-005W 673B-FW-0058-003W 673B-FW-0058-008 673B-FW-0423-001W 673B-FW-0423-005 681-FW-0088-001 681-FW-0088-002 681-FW-0212-002 681-FW-0212-003 681-IA-0030-006 681-IA-0030-007 682-CHW-0364-001 682-CHW-0364-007W 682-CHW-0370-001 682-CHW-0370-003 683-FW-0090-001 683-FW-0090-002 683-FW-0210-005 683-O2-1001-001 683-O2-1001-002 683-O2-1001-003 683-O2-1001-004 683-O2-1001-005 683-O2-1001-006 683-O2-1001-007 683-O2-1001-008 683-W-0077-002W A01A-DA-0249-001 A01A-DA-0249-002 A01A-DA-0249-003 A01A-DA-0249-004 A01A-DA-0249-005 A01B-DA-0036-001P A01P-D-0059-002P A01P-D-0151-002 A01P-D-0151-006 A01P-D-0151-007 A01P-D-0151-008 A01P-D-0151-009 A01P-D-0165-001 A01P-DA-0249-007W A01P-DA-0952-001 A01P-DW-0007-001P A01P-SP-0007-004 A01P-STA-0005-003 A01S-DA-0111-002H A01S-SP-0008-003 A01S-STA-0006-006W A02B-DO-0004-009 A02B-GW-0017-003P A02P-DA-0323-001 A02P-DA-0323-002 A02P-DA-0323-003 A02P-DA-0952-001 A02P-DA-0952-002 A02P-DA-0952-004 A02P-DA-0952-007 A02P-GW-0045-001 A02S-CHW-0017-003 A02S-CHW-0021-003 A02S-DA-0570-001H A03A-IA-0099-002 A03A-IA-0099-004P A03A-SP-0004-004 A03B-BR-0017-001P A03B-BR-0017-002 A03B-BR-0017-004P A03B-GW-0397-001 A03P-DA-0952-001 A03P-DA-0952-002 A03P-DTH-0009-001 A03P-DTH-0009-003 A03P-DTH-0013-001 A03P-SW-5620-003 A03P-SW-5624-003 A03S-CHW-0017-001 A03S-CHW-0017-002 A03S-CHW-0021-001 A03S-CHW-0021-002 A03S-DTH-0014-002 A03S-SP-0005-003 A03S-SW-5619-003 A03S-SW-5623-002 A11A-DA-0952-002 A11B-DA-0793-001P A11B-DA-0793-002 A11B-DA-0793-003 A11B-SP-0128-001 A11B-SP-0128-002 A11P-BR-0008-002 A11P-BR-0008-003 A11P-SP-0024-004 A11S-SP-0036-002 A11S-SP-0036-003 A13A-W-0007-001 A13B-BR-0051-002 A13B-FW-0211-001H A13B-PW-0485-003 A13B-SA-0108-001 A13B-SA-0108-003 A13B-W-0053-001 A13B-W-0053-004 A13S-CHW-0001-001H A13S-CHW-0001-002 A13S-CHW-0023-001H A13S-CHW-0023-002 A22A-D-0075-003 A22B-D-0025-002 A22B-D-0025-005 A22B-FW-0236-003 A22B-H-9851-001H A22B-H-9852-002 A22B-STA-0017-001 A22B-STA-0021-001 A22P-SP-0007-002 A22S-CHW-0002-003 A22S-SP-0106-003 A22S-SP-0106-005 A23A-PWH-0003-005 A23A-W-0074-003 A23B-DO-0001-022 A23B-FW-0211-001 A23B-FW-0211-002 A23B-FW-0211-003 A23B-H-3018-001 A23B-W-0184-003 A23P-FW-0207-003 A23P-FW-0207-004 A23P-FW-0238-001 A32A-D-0042-001 A32B-D-0083-001 A32B-IA-0113-004P A32P-D-0056-001 A32S-DA-0122-005 A32S-H-0007-005 A32S-H-0007-006 A33A-D-0162-001P A33A-D-0162-002W A33A-D-0165-001P A33A-D-0165-002W A33A-DA-0557-001 A33A-DA-0557-002 A33A-DA-0557-003 A33A-FW-0237-001 A33A-FW-0237-002 A33A-PW-0002-006 A33A-PW-0105-010 A33A-SA-0144-004 A33A-SA-0144-008 A33A-SA-0144-012 A33A-W-0007-001 A33A-W-0007-006 A33A-W-0037-001 A33A-W-0037-002 A33A-W-0037-003 A33A-W-0407-001P A33A-W-0407-002H A33A-W-0534-001 A33A-W-0534-002 A33A-W-0534-003W A33A-W-0541-001 A33A-W-0541-002 A33A-W-0541-003W A33A-W-0542-001 A33A-W-0542-002 A33A-W-0542-003 A33B-BR-0023-001 A33B-BR-0023-002H A33B-CHW-0018-003H A33B-CHW-0019-001H A33B-DA-0557-005 A33B-SP-1015-001W A33P-FW-0207-004 A33P-FW-0207-005H A33S-BWG-0028-011 A33S-BWG-0028-012 A33S-BWG-0028-013H A33S-BWG-0028-014 A33S-BWG-0028-015 A33S-BWG-0028-016 A33S-BWG-0028-017 A33S-BWG-0028-018 A33S-BWG-0028-019 A33S-DA-0974-003P A33S-FW-0211-004H A33S-SP-1021-001W A33S-W-0570-001 A42A-W-0361-001W A42P-GW-0393-002H A42S-GW-0069-002H A43A-FW-0207-001P A43A-FW-0207-004 A43A-FW-0207-005H A43A-SW-0181-001W A43A-SW-0181-005 A43A-W-0046-003 A43A-W-0393-001H A43A-W-0393-003W A43A-W-0396-001H A43A-W-0396-002W A43A-W-0396-003W A43B-D-0162-001 A43B-D-0162-002H A43B-D-0165-001 A43B-D-0165-002 A43B-D-0165-003H A43B-W-0074-005 A43B-W-0074-007 A43B-W-0074-008 A43B-W-0392-001H A43B-W-0392-004W A43B-W-0392-005 A43B-W-0396-007 A43B-W-0396-008 A43B-W-0398-001 A43B-W-0398-004 A43B-W-0407-001 A43B-W-0444-006H A43B-W-0454-001 A43B-W-0454-004W A43B-W-0454-005 A43B-W-0454-006 A43B-W-0457-003H A43C-BR-0022-002H A43C-BR-0023-001 A43C-CHW-0005-009 A43C-CHW-0008-010 A43C-CHW-0012-009 A43C-CHW-0015-008W A43C-CHW-0015-009 A43C-DO-0005-003H A43C-FW-0211-001 A43C-FW-0211-002H A43C-FW-0286-001 A43C-SP-1000-002W A43C-SP-1001-002W A43C-SP-1002-002W A43C-SP-1003-002W A43C-W-0065-002W A43C-W-0068-004W A43C-W-0068-005 A43C-W-0070-007 A43C-W-0071-001 A43C-W-0072-005W A43C-W-0072-007 A43C-W-0077-006H A43C-W-0078-006H A43C-W-0563-004W A43C-W-0563-005 A53A-DA-0063-001 A53A-FW-0207-001 A53A-FW-0503-002 A53A-H-3016-004 A53A-H-3017-004 A53A-H-3017-005 A53A-SW-0057-001 A53A-SW-0057-005W A53A-W-0382-003H A53A-W-0383-001W A53A-W-0383-002H A53A-W-0389-001W A53A-W-0390-001W A53A-W-0390-002H A53A-W-0394-003H A53A-W-0444-002W A53B-D-0162-001 A53B-D-0162-002H A53B-D-0165-002H A53B-DA-0070-001H A53B-SW-0180-004W A53B-SW-0180-005W A53B-W-0368-003W A53B-W-0385-002 A53B-W-0385-003 A53B-W-0386-001 A53B-W-0386-003W A53B-W-0387-001W A53B-W-0387-002 A53B-W-0389-002H A53B-W-0395-003W A53B-W-0530-001W A53B-W-0530-002 A53C-BR-0022-001P A53C-BR-0022-002H A53C-BR-0023-001P A53C-BR-0023-002H A53C-CHW-0022-001W A53C-CHW-0023-004W A53C-CHW-0024-001W A53C-CHW-0026-001W A53C-CHW-0028-001W A53C-CHW-0029-004W A53C-FW-0182-001H A53C-FW-0182-002 A53C-FW-0211-003 A53C-FW-0211-004H A53C-FW-0211-005 A53C-SW-0001-002 A53C-SW-0324-001 A53C-SW-5001-002 A53C-W-0041-002 A63A-BR-0012-001 A63A-BR-0022-003P A63A-BR-0022-004 A63A-BR-0022-005 A63A-BR-0022-007 A63A-BR-0022-008H A63A-BR-0030-003 A63A-BR-0030-004H A63A-BR-0031-003 A63A-BR-0031-004H A63A-BWG-0017-004H A63A-BWG-0017-005 A63A-BWG-0017-006 A63A-BWG-0017-007 A63A-BWG-0017-008 A63A-D-0069-002 A63A-D-0075-001W A63A-D-0165-002P A63A-D-0236-001P A63A-DO-0005-011 A63A-SP-0096-002 A63A-SP-0096-003W A63A-SP-0096-004 A63A-SP-0096-005W A63A-SW-0059-001 A63A-SW-0601-002 A63B-BR-0022-001 A63B-BR-0022-003 A63B-BR-0030-001 A63B-BR-0031-001 A63B-BWG-0017-003 A63B-D-0037-001 A63B-D-0037-003 A63B-D-0162-004P A63B-D-0165-001H A63B-D-0165-002 A63B-D-0165-003P A63B-D-0169-001P A63B-D-0234-001P A63B-IA-0120-002 A63B-IA-0120-003 A63B-SW-0015-001W A63B-SW-0036-001W A63C-BR-0022-001 A63C-BR-0022-004 A63C-BR-0022-005H A63C-BR-0023-001 A63C-BWG-0009-003 A63C-BWG-0013-004 A63C-BWG-0013-005W A63C-BWG-0016-014 A63C-BWG-0016-016H A63C-BWG-0016-017 A63C-BWG-0016-020 A63C-BWG-0016-021 A63C-BWG-0016-022 A63C-BWG-0028-007 A63C-BWG-0028-013 A63C-FW-0083-001W A63C-FW-0083-002W A63C-FW-0182-005 A63C-FW-0211-001 A63C-SW-0324-001 A63C-SW-0324-002 A63C-SW-0324-003 A63C-SW-0325-002 A63C-SW-0325-003 A63C-SW-1111-002 A63P-BR-0047-001 A63P-BR-0047-002P A63P-D-0038-002 A63P-DA-0180-001W A63P-DF-0961-001W A63P-DTH-0009-001 A63P-DTH-0009-001P A63P-DTH-0009-002 A63P-TL-0180-001 A63S-BR-0057-001W A63S-DA-1199-001 A63S-DTH-0011-001P A63S-DTH-0011-002W A63S-DTH-0011-003 A63S-DTH-0012-001 A73A-BR-0030-001W A73A-D-0032-005 A73A-DA-0163-001 A73A-DA-0164-001 A73A-SW-0002-004W A73A-SW-0214-001W A73A-TL-0183-001 A73B-BR-0030-001P A73B-D-0055-001W A73B-D-0057-001P A73B-D-0057-002 A73B-D-0074-004 A73B-D-0074-007 A73B-D-0082-008 A73B-FW-0003-001W A73B-SP-0015-004 A73B-SW-0010-001W A73B-SW-0011-003W A73B-SW-0035-002 A73B-SW-0035-003W A73B-SW-0214-005 A73C-BR-0023-001 A73C-BR-0023-002 A73C-BR-0026-002W A73C-BR-0053-001P A73C-DA-0159-001 A73C-FW-0002-001 A73C-SP-0098-002P A73C-SW-0001-005 A73C-SW-0034-002 A73C-SW-0042-002 A73C-SW-0042-003 A73C-SW-0042-004 A73C-SW-0063-002 A73C-SW-0063-004 A73C-SW-0063-006W A73C-SW-0316-001 A81A-SW-5622-009W A81A-SW-5622-010H A81C-SW-5621-009W A81C-SW-5621-010 AP1C-GW-0283-001 AP1C-SP-0035-001 AP1C-SP-0035-002 AP1C-W-0359-003 AP1C-W-0359-004 AP1P-D-0151-002 AP1P-D-0159-004 AP1P-DA-0325-001 AP1P-DA-0325-004P AP1P-DA-3103-003 AP1P-FW-0299-001 AP1P-FW-0301-001 AP1P-FW-0381-003 AP1P-FW-0381-004 AP1P-GW-0013-002 AP1P-SFW-0004-001 AP1P-SFW-0004-003 AP1P-SFW-0004-004 AP1P-SFW-0004-005 AP1P-SFW-0004-006 AP1P-SFW-0004-007 AP1P-SFW-0004-008 AP1P-SFW-0004-009 AP1P-SFW-0004-010 AP1P-SFW-0004-011 AP1P-SFW-0004-013 AP1P-SFW-0004-014 AP1P-SFW-0004-015 AP1P-SP-0100-004 AP1P-STA-0005-001 AP1P-STA-0005-004 AP1P-STA-0005-013 AP1P-W-0005-004P AP1S-AR-7002-001 AP1S-AR-7002-002 AP1S-AR-7002-003 AP1S-BG-7003-001 AP1S-BG-7004-001 AP1S-D-0146-006 AP1S-D-0146-008 AP1S-D-0146-015 AP1S-D-0147-001 AP1S-D-0147-002 AP1S-D-0157-003 AP1S-D-0157-004 AP1S-D-0157-006 AP1S-D-0157-007 AP1S-D-0157-009 AP1S-D-0157-010 AP1S-DA-0567-003 AP1S-DA-6572-001 AP1S-DA-6572-002 AP1S-DA-6572-004 AP1S-DA-6572-005 AP1S-DA-6572-006 AP1S-DA-6572-007 AP1S-DA-6572-008 AP1S-DA-6573-001 AP1S-DA-6573-002 AP1S-DA-6573-003 AP1S-EG-0003-002 AP1S-FW-0155-002 AP1S-FW-0350-002 AP1S-FW-0382-001 AP1S-FW-0382-002 AP1S-HE-7002-001 AP1S-HE-7002-002 AP1S-HE-7002-003 AP1S-IA-0127-001 AP1S-IA-0127-002 AP1S-IA-0127-003 AP1S-IA-0127-007 AP1S-SFW-0003-001 AP1S-SFW-0003-005 AP1S-SFW-0003-006 AP1S-SFW-0003-007 AP1S-SFW-0003-008 AP1S-SFW-0003-009 AP1S-SFW-0003-010 AP1S-SFW-0003-011 AP1S-SFW-0003-012 AP1S-SFW-0003-013 AP1S-SFW-0003-014 AP1S-SFW-0003-017 AP1S-SFW-0003-018 AP1S-SFW-0003-030 AP1S-SFW-0003-032 AP1S-SFW-0003-033 AP1S-SP-0099-001P AP1S-SP-1005-001H AP1S-STA-0014-001 AP1S-STA-0014-002 AP1S-STA-0014-003 AP1S-STA-0014-005 AP1S-STA-0014-006 AP1S-STA-0015-001 AP1S-STA-0015-002 AP1S-STA-0015-003 AP1S-STA-0015-005 AP1S-STA-0015-006 AP1S-W-0077-003 AP1S-W-0077-005 B07P-TL-0190-001 B07S-TL-0189-001 B09P-PCW-0190-001 B09P-PCW-0257-001 B09P-PCW-0257-002 B09P-PCW-0257-005 B09P-PCW-0257-006 B09S-PCW-0257-001 B09S-PCW-0257-002 B09S-PCW-0257-005 B09S-PCW-0257-006 B09S-PCW-0295-001 B09S-TL-0074-001 B13P-TL-0211-001 B13S-PLD-0013-001 B710-BG-0001-005 B710-BG-0028-003 B710-BG-0028-005 B710-BG-0057-001H B710-BG-0057-002 B710-BG-0057-008 B710-BG-0121-002 B710-BG-0150-002 B710-BG-0150-009 B710-BR-0016-002 B710-BR-0042-003 B710-D-0098-009 B710-DA-0002-001 B710-DA-0002-002 B710-DA-0002-003 B710-DA-0197-001 B710-DA-0197-002 B710-DA-0991-001 B710-DA-0991-002 B710-DA-0991-003 B710-DA-0991-004 B710-DA-0991-005 B710-DA-0991-006 B710-DA-0991-007 B710-DA-0991-008 B710-DA-0994-004 B710-DA-0994-009 B710-DA-0994-013 B710-DA-0994-016 B710-DA-0994-020 B710-DA-2792-006 B710-DA-4040-007 B710-DA-8176-001H B710-FG-0051-004 B710-FG-0051-006 B710-FG-0051-014 B710-FG-0054-004 B710-FG-0056-004 B710-FG-0072-003 B710-FL-0045-001 B710-FL-0048-002 B710-FL-0048-003 B710-FL-0048-006 B710-FL-0082-001 B710-FL-0083-002 B710-FL-0311-005 B710-FL-0323-002 B710-FLC-0004-014 B710-FLC-0004-018 B710-FLC-0004-030H B710-FLC-0044-001 B710-FW-0018-001 B710-FW-0018-003 B710-FW-0042-001 B710-FW-0042-002W B710-FW-0044-006 B710-FW-0055-001 B710-FW-0055-002W B710-FW-0056-005 B710-FW-0124-002H B710-FW-0125-002H B710-FW-0126-002H B710-FW-0126-003 B710-FW-0169-001 B710-FW-0169-016 B710-FW-0193-005 B710-FW-0206-007 B710-H-3028-002 B710-H-3028-004 B710-H-3028-005 B710-H-3029-002 B710-H-3029-003 B710-H-3030-004H B710-H-3030-005 B710-H-3031-007 B710-H-3032-001 B710-H-3039-002 B710-H-3039-003 B710-H-3040-003 B710-H-3040-004W B710-H-9877-020 B710-H-9879-004 B710-H-9880-004 B710-H-9881-004 B710-H-9881-006 B710-H-9881-006 B710-H-9881-007 B710-H-9881-007 B710-H-9881-009 B710-H-9882-004 B710-H-9882-006 B710-H-9882-006 B710-H-9882-007 B710-H-9882-007 B710-H-9882-009 B710-H-9883-004 B710-H-9883-009 B710-H-9884-004 B710-H-9884-006 B710-H-9884-006 B710-H-9884-007 B710-H-9884-007 B710-H-9884-008 B710-H-9887-007 B710-H-9888-007 B710-H-9889-007 B710-H-9890-006 B710-H-9890-008 B710-IA-0121-002 B710-IA-0121-003 B710-IA-0121-004H B710-IA-0131-001 B710-IA-0131-005 B710-IA-0131-010 B710-IA-0131-011 B710-IA-0133-002 B710-IA-0133-004 B710-IA-0133-010 B710-IA-0133-011 B710-IA-0133-013 B710-IA-0136-003 B710-IA-0136-007 B710-IA-0136-015 B710-PC-0673-001H B710-PCG-0025-007H B710-PCG-0064-001 B710-PCG-0064-002 B710-PW-0094-001 B710-PW-0094-002 B710-PW-0094-003 B710-PW-0094-012 B710-PW-0094-013 B710-SA-0060-005 B710-SA-0063-003 B710-SA-0063-005 B710-SA-0064-005 B710-SA-0087-002H B710-SA-0087-003 B710-SA-0087-004 B710-SA-0087-006 B710-SA-0087-011 B710-SN-0001-003 B710-SN-0001-004 B710-SN-0001-018H B710-SN-0001-019H B710-SN-0003-001 B710-SN-0003-003 B710-SN-0003-004 B710-SN-0003-005 B710-SN-0004-003 B710-SW-0025-002W B710-SW-0025-004 B710-SW-0063-006 B710-SW-0063-012 B710-SW-0077-011 B710-SW-0173-007 B710-SW-0326-002 B710-SW-0326-005 B710-SW-0328-005 B710-SW-0330-007 B710-SW-0330-012 B710-SW-0330-013 B710-TC-0003-005 B710-TC-0005-004 B710-TC-0071-003 B710-TC-0090-002 B710-W--0164-001 B710-W--0164-010 B710-W-0459-002 B710-W-0496-002 B710-W-0510-004H B710-W-0510-005 B7202-DFC-0106-001 B7202-DFC-0106-003 B7202-DFC-0106-004 B7202-FL-0307-004 B7202-FW-0028-005 B7202-FW-0028-014H B7202-FW-0126-006 B7202-FW-0126-007 B7202-FW-0134-001H B7202-FW-0201-002H B7202-FW-0201-003 B7202-FW-0214-007H B7202-FW-0337-002 B7202-PC-0860-006 B7202-PCW-0052-002 B7202-PCW-0052-004W B7202-SA-0065-005 B7202-SA-0065-007 B7202-SW-0253-017 B7202-TC-0008-004 B7202-TC-0009-001W B7202-TC-0063-005W B7202-TC-0063-007W B7202-TC-0066-002 B7202-TC-0087-002 B7203-BG-0030-001 B7203-BG-0030-002 B7203-BG-0033-001 B7203-BG-0033-003 B7203-BG-0033-005 B7203-BG-0033-013 B7203-DFC-0010-004 B7203-DFC-0107-003 B7203-DFC-0107-005H B7203-FL-0002-003 B7203-FL-0095-004 B7203-PCG-0037-001W B7203-PCW-0009-001 B7203-PCW-0009-002 B7203-PCW-0014-010 B7203-PCW-0025-001 B7203-PCW-0027-003 B7203-PCW-0038-001 B7203-PCW-0045-001 B7203-PCW-0120-001W B7203-PCW-0176-001W B7203-PCW-0176-004 B7203-PCW-0193-001 B7203-PCW-0193-002 B7203-PCW-0193-003 B7203-PCW-0193-006 B7203-PCW-0194-002 B7203-PCW-0194-005 B7203-SW-0264-021 B7203-SW-0265-004 B7203-SW-0322-015 B7203-SW-0323-005 B7203-TC-6007-001 B7203-TC-6008-005 B7203-TC-6010-003 B7203-TC-6012-004 B7203-W--0015-001 B7204-DA-1044-001 B7204-DA-1044-004 B7204-DA-1044-005 B7204-DA-1044-014 B7204-DA-1130-009H B7204-FL-0061-001 B7204-FLC-0004-018 B7204-FLC-0047-005 B7204-FLC-0047-008 B7204-FLC-0047-009 B7204-FW-0135-003 B7204-FW-0135-009H B7204-H-3030-001 B7204-IA-0136-001 B7204-PCW-0007-003 B7204-PCW-0007-005 B720-D-0120-002 B720-DA-2569-001 B720-DA-2569-003 B720-DA-2570-001W B720-DA-2570-002 B720-DA-2570-012W B720-DA-2570-013 B720-DA-2792-003P B720-DA-2792-009 B720-FL-0030-001W B720-FL-0142-001 B720-FW-0053-001W B720-FW-0054-001W B720-FW-0054-005W B720-FW-0054-006 B720-FW-0108-007 B720-IA-0133-020 B720-IA-0133-022 B720-IA-0133-024 B720-IA-0134-002 B720-IA-0134-004 B720-IA-0134-005 B720-IA-0134-011 B720-IA-0134-023 B720-IA-0194-001 B720-PCW-0093-005 B720-PCW-0126-005 B720-PCW-0127-001W B720-PCW-0132-001 B720-PCW-0132-007 B720-PCW-0132-008W B720-PCW-0133-005W B720-PCW-0133-007W B720-PCW-0134-001W B720-PCW-0134-002W B720-PCW-0135-006 B720-PCW-0135-008W B720-PCW-0135-009W B720-PCW-0136-001W B720-PCW-0136-003 B720-PCW-0137-012 B720-PCW-0137-023 B720-PCW-0167-001W B720-PCW-0167-002W B720-PCW-0167-005 B720-PCW-0168-005W B720-PCW-0168-006W B720-PCW-0169-001W B720-PCW-0169-003W B720-PCW-0170-001W B720-PCW-0171-001W B720-PCW-0172-001W B720-PCW-0172-002W B720-PCW-0196-001 B720-PCW-0196-005 B720-PCW-0196-011 B720-SA-0087-005 B720-SW-0256-003 B720-SW-0256-008 B720-TC-6100-001W B720-TC-6101-003 B720-W--0144-007 B720-W-0459-001 B720-W-0459-003 B730-CNI-0397-001 B730-CV-0094-001 B730-DA-0361-009 B730-DA-0374-001 B730-DA-0374-002 B730-DA-0518-033 B730-DA-0893-002 B730-DA-1015-001 B730-DA-1015-002 B730-DA-1015-004 B730-DA-1180-001 B730-DA-1310-003 B730-DA-3751-002H B730-DA-3752-001H B730-DFC-0106-016 B730-DFC-0106-017 B730-DFC-1744-001 B730-FL-0029-002 B730-FL-0036-001H B730-FL-0041-003 B730-FL-0042-004W B730-FL-0069-001 B730-FL-0069-002 B730-FL-0069-008 B730-FL-0069-010 B730-FL-0069-012 B730-FL-0091-002 B730-FL-0091-006 B730-FL-0091-008 B730-FL-0093-004 B730-FL-0112-005 B730-FL-0112-015 B730-FL-0113-011 B730-FL-0114-005 B730-FL-0115-004 B730-FL-0123-002 B730-FL-0123-003 B730-FL-0124-001 B730-FL-0143-009 B730-FL-0290-008 B730-FL-0322-008 B730-FL-0322-009 B730-FLC-0004-025 B730-FLC-0038-003 B730-FLC-0038-011 B730-FLC-0038-012H B730-FW-0001-001 B730-FW-0001-004 B730-FW-0020-001 B730-FW-0020-002 B730-FW-0020-005 B730-FW-0043-005 B730-FW-0052-003 B730-FW-0052-005 B730-FW-0060-002 B730-FW-0080-003 B730-FW-0080-005 B730-FW-0080-024 B730-FW-0106-004 B730-FW-0106-005 B730-FW-0106-006 B730-FW-0135-006H B730-FW-0143-001 B730-FW-0143-004H B730-FW-0168-001H B730-FW-0171-012 B730-FW-0171-013 B730-FW-0171-014 B730-FW-0172-001 B730-FW-0172-004 B730-FW-0172-005 B730-FW-0172-008 B730-FW-0172-009 B730-FW-0172-011 B730-FW-0216-002 B730-FW-0228-002 B730-FW-0228-003 B730-FW-0228-006 B730-FW-0501-002 B730-FW-2754-001H B730-FW-3837-001 B730-FW-3837-002 B730-FW-3837-003 B730-FW-3837-011 B730-FW-3837-019 B730-FW-3837-033 B730-FW-3837-040 B730-FW-3862-052 B730-FW-3862-053 B730-FW-3862-057 B730-FW-3989-001 B730-FW-3990-002 B730-FW-3991-001 B730-FW-3991-012 B730-IA-0265-002 B730-IA-0266-005 B730-IA-0266-006 B730-IA-0267-001 B730-IA-0267-002 B730-IA-0268-007 B730-P-0004-006 B730-PC-0203-005 B730-PC-0203-006P B730-PC-0350-004 B730-PC-0350-005 B730-PC-2600-002 B730-PCW-0044-008 B730-PCW-0053-004 B730-PCW-0109-001 B730-PCW-0186-031 B730-PCW-0186-040 B730-PCW-0186-041 B730-PCW-0200-007 B730-PCW-0201-006 B730-PCW-0201-011 B730-PW-0106-002 B730-PW-0106-006 B730-PW-0106-007 B730-SA-0087-005 B730-SA-0107-012 B730-SA-0107-013 B730-SA-0112-004 B730-SA-0112-005 B730-SA-0112-006 B730-SA-0112-007 B730-SA-0112-008 B730-SA-0112-009 B730-SA-0112-011 B730-SA-0112-012 B730-SA-0112-013 B730-SA-0112-014 B730-SA-0112-016 B730-SA-0112-017 B730-SA-0112-018 B730-SW-0045-003 B730-SW-0045-005 B730-SW-0045-007 B730-SW-0045-008 B730-SW-0045-010 B730-SW-0045-012 B730-SW-0045-013 B730-SW-0045-015 B730-SW-0267-003 B730-SW-0267-004 B730-SW-0318-001 B730-SW-0318-002 B730-SW-0319-021 B730-SW-0321-025 B730-SW-0321-026 B730-SW-0502-018 B730-SW-0502-019 B730-SW-0502-020 B730-SW-0502-021 B730-SW-0502-033 B730-SW-0502-045 B730-W-0034-002 B730-W-0034-003 B730-W-0514-007 B730-W-0514-008 B730-W-0580-009 B730-W-0580-010 B730-W-0580-011 B740-BG-0035-004 B740-CNI-0397-013 B740-D-0017-006 B740-D-0019-008W B740-D-0121-003 B740-DA-0374-001 B740-DA-0374-005 B740-DA-0374-006 B740-DA-0374-016 B740-DA-0374-017 B740-DA-0374-023 B740-DA-1015-011 B740-DA-1015-013 B740-DA-1312-001 B740-DA-1313-002 B740-DA-1313-003 B740-DA-1313-004 B740-DA-1313-008 B740-DA-1313-009 B740-DA-1315-003 B740-DA-1315-004 B740-DA-1324-001 B740-DA-1325-002 B740-DA-1325-003 B740-DA-1325-007 B740-DA-1325-008 B740-DA-3753-001H B740-DA-8167-002 B740-DA-8878-007 B740-FL-0027-003 B740-FL-0041-001 B740-FL-0041-009 B740-FL-0043-005 B740-FL-0043-007 B740-FL-0046-002 B740-FL-0053-010 B740-FL-0060-001 B740-FL-0066-001 B740-FL-0100-008 B740-FL-0103-001 B740-FL-0103-003 B740-FL-0104-010 B740-FL-0111-003 B740-FL-0129-001 B740-FL-0129-008 B740-FL-0133-006 B740-FL-0134-001 B740-FL-0137-001 B740-FL-0138-001 B740-FL-0139-001 B740-FL-0160-001 B740-FL-0160-010 B740-FL-0221-007 B740-FL-0221-010 B740-FL-0222-003 B740-FL-0222-005 B740-FL-0222-007 B740-FL-0223-001 B740-FL-0224-001 B740-FLC-0023-011 B740-FLC-0023-012 B740-FLC-0023-013 B740-FLC-0024-005 B740-FLC-0024-012 B740-FLC-0027-005 B740-FLC-0028-002 B740-FLC-0028-003 B740-FLC-0033-006 B740-FLC-0033-007 B740-FW-0079-006 B740-FW-0079-016 B740-FW-0081-002 B740-FW-0105-004 B740-FW-0115-011 B740-FW-0128-002 B740-FW-0128-011 B740-FW-0128-012 B740-FW-0137-001 B740-FW-0138-006 B740-FW-0138-007 B740-FW-0138-014 B740-FW-0145-002 B740-FW-0145-008 B740-FW-0145-009 B740-FW-0172-004 B740-FW-0172-005 B740-FW-0173-013 B740-FW-0174-001 B740-FW-0174-002 B740-FW-0174-003 B740-FW-0174-011 B740-FW-0174-016 B740-FW-0174-017 B740-FW-0174-018 B740-FW-0217-003 B740-FW-0217-006 B740-FW-3843-065 B740-FW-3853-054 B740-FW-3853-055 B740-H-3030-013 B740-H-3031-001 B740-IA-0136-012 B740-IA-0268-001 B740-IA-0268-002 B740-IA-0268-004 B740-IA-0268-005 B740-IA-0268-006 B740-IA-0268-007 B740-P-0142-005 B740-PCW-0200-006H B740-PCW-0201-006H B740-PW-0904-006 B740-SW-0268-009 B740-SW-0269-006 B740-SW-0269-007 B740-SW-0313-014 B740-SW-0314-001 B740-SW-0314-003 B740-SW-0314-004 B740-SW-0314-005 B740-SW-0314-006 B740-SW-0314-007 B740-SW-0314-008 B740-SW-0314-009 B740-SW-0314-010 B740-SW-0314-011 B740-SW-0314-012 B740-SW-0314-014 B740-SW-0314-015 B740-SW-0316-010 B740-SW-0316-011 B740-SW-0317-014 B740-SW-0317-015 B740-SW-8030-016 B740-SW-8030-017 B740-W--0003-012 B740-W--0062-012 B740-W--0309-001 B740-W--0309-002 B740-W--0506-002 B740-W--0506-003 B740-W--0506-004 B740-W--0507-004 B740-W--0513-003 B740-W--0513-006 B740-W--0513-009 B750-BG-0036-006 B750-CV-0127-001 B750-D-0084-002 B750-DA-0026-007 B750-DA-0026-008 B750-DA-0026-009 B750-DA-0117-002 B750-DA-0190-002 B750-DA-0190-003 B750-DA-0374-001 B750-DA-0374-007 B750-DA-0374-024 B750-DA-0886-001 B750-DA-0887-003 B750-DA-0890-005 B750-DA-1015-021 B750-DA-1015-022 B750-DA-1015-026 B750-DA-1015-027 B750-DA-1177-001 B750-DA-1197-001 B750-DA-1328-002 B750-DA-1328-003 B750-DA-1328-004 B750-DA-1328-006 B750-DA-1358-002 B750-DA-1358-003 B750-DA-1358-004 B750-DA-1358-006 B750-DA-1358-010 B750-DA-1358-011 B750-DA-1361-002 B750-DA-1361-003 B750-DA-1361-005 B750-DA-1361-006 B750-DA-3754-002H B750-DA-3755-001 B750-DA-3755-002H B750-FL-0014-001W B750-FL-0016-005 B750-FL-0025-001W B750-FL-0026-003 B750-FL-0026-005 B750-FL-0026-006 B750-FL-0034-008 B750-FL-0063-001 B750-FL-0151-001 B750-FL-0176-002 B750-FL-0176-003 B750-FL-0176-004 B750-FL-0176-005 B750-FL-0178-004 B750-FL-0180-001 B750-FL-0180-004 B750-FLC-0019-006 B750-FLC-0047-015 B750-FLC-0050-005 B750-FLC-0050-008 B750-FLC-0068-012 B750-FW-0009-004W B750-FW-0036-002 B750-FW-0036-003 B750-FW-0049-004 B750-FW-0049-005 B750-FW-0069-002 B750-FW-0069-003 B750-FW-0069-004 B750-FW-0076-001H B750-FW-0076-002 B750-FW-0076-003 B750-FW-0079-007 B750-FW-0079-008 B750-FW-0110-001 B750-FW-0136-003 B750-FW-0143-001 B750-FW-0143-003 B750-FW-0143-010 B750-FW-0145-001 B750-FW-0145-002 B750-FW-0146-001 B750-FW-0146-002 B750-FW-0146-006 B750-FW-0148-003 B750-FW-0165-006 B750-FW-0175-001 B750-FW-0175-002 B750-FW-0175-003 B750-FW-0175-004 B750-FW-0175-008 B750-FW-0175-016 B750-FW-0175-017 B750-FW-0175-018 B750-FW-0176-012 B750-FW-0215-002 B750-FW-0347-003 B750-FW-3812-001 B750-FW-3812-002 B750-FW-3812-006 B750-FW-3812-007 B750-FW-3812-008 B750-FW-3812-009 B750-FW-3812-022 B750-FW-3812-029 B750-FW-3812-031 B750-FW-3812-032 B750-FW-3812-033 B750-FW-3812-035 B750-FW-3812-036 B750-FW-3812-037 B750-FW-3812-038 B750-FW-3812-039 B750-FW-3812-040 B750-FW-3812-041 B750-FW-3812-048 B750-FW-3812-055 B750-FW-3812-056 B750-FW-3812-057 B750-FW-3812-058 B750-FW-3812-059 B750-FW-3843-026 B750-H-3031-001 B750-IA-0133-016 B750-IA-0167-010 B750-IA-0177-002 B750-PCG-0024-004 B750-PCG-0030-004 B750-PCW-7190-006 B750-PCW-7190-007 B750-PCW-7190-008 B750-PW-1772-001 B750-SA-0110-008 B750-SA-0110-009 B750-SA-0110-010 B750-SW-0044-015 B750-SW-0044-016 B750-SW-0044-018 B750-SW-0270-006 B750-SW-0270-007 B750-SW-0271-001 B750-SW-0271-013 B750-SW-0309-010 B750-SW-0311-017 B750-SW-0311-019 B750-SW-0311-021 B750-SW-0311-022 B750-SW-0311-023 B750-SW-0312-009 B750-SW-0503-021 B750-SW-0503-026 B750-SW-8029-010 B750-TC-0026-003 B750-TC-0026-004 B750-TC-0026-007 B750-TL-0477-002 B750-TL-0478-002 B750-W--0459-013 B750-W--0505-002 B760-BG-0155-001 B760-BG-0155-003 B760-D-0017-005 B760-DA-1015-029 B760-DA-1015-031 B760-DA-1016-002 B760-DA-1609-002 B760-DA-1743-001 B760-DA-8126-001 B760-DA-8126-002 B760-DA-8126-003 B760-DA-8126-004 B760-DA-8126-005 B760-DA-8127-001 B760-DA-8127-002 B760-DA-8127-003 B760-DA-8127-004 B760-DA-8127-005 B760-DA-8879-001 B760-DA-8879-003 B760-DA-8879-004 B760-DA-8879-005 B760-DA-8879-008 B760-DA-8879-009 B760-DA-8879-010 B760-DA-8879-011 B760-DA-8879-012 B760-DA-8879-013 B760-DA-8879-014 B760-DA-8879-015 B760-DA-8879-016 B760-DA-8879-017P B760-DA-8879-018 B760-DA-8879-019P B760-DA-8879-020 B760-DA-8880-002 B760-DA-8882-001 B760-DA-8882-002 B760-DA-8882-003 B760-DA-8882-004 B760-DA-8884-002 B760-DA-8884-003 B760-DFC-0209-004 B760-DFC-0209-005 B760-DFC-1700-001 B760-DFC-1812-001 B760-DFC-1812-002 B760-FL-0136-008 B760-FL-0252-003 B760-FL-0252-004 B760-FL-0252-007 B760-FL-0253-003 B760-FL-0253-004 B760-FL-0253-008 B760-FL-0254-003 B760-FLC-0004-002H B760-FLC-0012-001 B760-FLC-0012-002 B760-FLC-0012-003 B760-FLC-0012-015 B760-FLC-0012-016 B760-FLC-0017-003 B760-FW-0107-001W B760-FW-0121-002 B760-FW-0165-001 B760-FW-0177-001 B760-FW-0177-002 B760-FW-0177-003 B760-FW-0177-005 B760-FW-0177-006 B760-FW-0177-013 B760-FW-0177-014 B760-FW-0213-003 B760-FW-0224-001 B760-FW-3981-010 B760-FW-3981-011 B760-FW-3981-014 B760-IA-0136-005 B760-IA-0136-006 B760-IA-0136-011 B760-IA-0261-006 B760-IA-0508-002 B760-IA-0508-003 B760-IA-0521-003 B760-IA-0521-004 B760-IA-0521-005 B760-IA-0521-006 B760-IA-0521-007 B760-IA-0521-008 B760-IA-0521-009 B760-IA-0521-010 B760-IA-0591-001 B760-IA-0790-001 B760-PCG-0027-008 B760-SA-0082-008 B760-SW-0008-013 B760-SW-0272-042 B760-SW-0272-043 B760-SW-0305-041 B760-SW-0305-042 B760-SW-0306-042 B760-SW-0306-043 B760-SW-0307-002 B760-SW-0307-003 B760-TC-0060-002 B760-TC-0110-001 B760-TC-6038-003 B760-TC-6038-004 B760-W--0025-007 B760-W-0459-004 B760-W--0501-001 B760-W--0501-002 B770-AO-0004-003 B770-AO-0005-002W B770-AO-0005-028 B770-AO-0005-029 B770-AO-0005-030W B770-AO-0013-003 B770-AO-0013-005 B770-AO-0015-020 B770-AO-0020-002 B770-AO-0021-001 B770-AO-0022-006 B770-AO-0023-020 B770-BG-0029-003 B770-BG-0029-004H B770-BG-0029-005 B770-BG-0051-003 B770-BG-0051-004H B770-BG-0051-005 B770-BG-8874-005 B770-BR-0017-010H B770-BR-0022-021 B770-BR-0022-022 B770-BR-0022-023 B770-CHW-0279-001H B770-CHW-0280-002 B770-CHW-0280-004 B770-CHW-0280-031H B770-D-0084-014 B770-D-0084-015 B770-D-0206-004 B770-D-0206-005 B770-D-0206-006 B770-D-0206-010 B770-D-0206-012 B770-DA-1176-001 B770-F-2302-024 B770-FL-0011-001W B770-FL-0063-001 B770-FL-0191-005 B770-FL-0192-001 B770-FL-0192-002 B770-FL-0192-004 B770-FL-0193-001 B770-FL-0193-002 B770-FL-0193-005 B770-FL-0194-001 B770-FL-0194-004 B770-FL-0196-001 B770-FL-0196-005 B770-FL-0197-001 B770-FL-0197-004 B770-FL-0198-001 B770-FL-0198-004 B770-FL-0199-002 B770-FL-0199-005 B770-FL-0200-005 B770-FL-0200-007 B770-FL-0201-001 B770-FL-0246-001 B770-FL-0246-003 B770-FL-0247-001 B770-FL-0248-004 B770-FL-0271-004 B770-FL-0272-001 B770-FL-0272-005 B770-FL-0275-003 B770-FL-0276-005 B770-FL-0278-001 B770-FLC-0002-006 B770-FLC-0004-014 B770-FLC-0004-027 B770-FLC-0009-004 B770-FLC-0033-003 B770-FLC-0033-005 B770-FLC-0033-006 B770-FLC-0038-006 B770-FLC-0038-010 B770-FW-0007-002 B770-FW-0026-016 B770-FW-0150-001 B770-FW-0150-002H B770-FW-0211-002 B770-FW-0339-003 B770-FW-0376-017 B770-IA-0133-008 B770-IA-0263-006 B770-IA-0263-007 B770-IA-0263-008 B770-PCG-0026-002 B770-PCG-0026-003 B770-PCG-0026-007 B770-PCG-0026-008 B770-PCG-0053-006 B770-PW-0144-001 B770-PW-0144-002H B770-PW-0144-003 B770-PW-0144-004H B770-PW-0912-009 B770-SW-0005-005 B770-SW-0005-008 B770-SW-0018-018 B770-SW-0038-001 B770-SW-0038-009 B770-SW-0301-013 B770-SW-0302-002 B770-SW-0302-019 B770-SW-0303-001 B770-SW-0303-002 B770-SW-0304-001 B770-SW-0304-002 B770-TC-0083-005 B770-W--0549-003 B770-W--0549-004W B910-H-5233-001 B910-H-5233-002P B910-H-5234-001 B910-H-5234-002P B910-PCG-0056-005 B910-SW-0256-007 B910-SW-0256-008 B920-D-0070-011 B920-D-0071-007 B920-DA-0173-001W B920-DA-0613-005 B920-DA-0613-006 B920-DA-0613-007 B920-DO-0048-001W B920-DO-0048-002 B920-DO-0048-003 B920-DO-0051-001W B920-DO-0051-002 B920-DO-0051-003 B920-EG-0001-010 B920-EG-0001-012 B920-EG-0001-013 B920-EG-0001-014 B920-EG-0004-007 B920-EG-0004-008 B920-EG-0004-009 B920-EG-0004-010 B920-EG-0012-008 B920-EG-0012-009 B920-EG-0012-010 B920-EG-0012-011 B920-FW-0057-002 B920-FW-0057-003 B920-FW-0061-002 B920-FW-0061-003 B920-FW-0061-005 B920-FW-0061-006 B920-FW-0061-007 B920-FW-0061-010 B920-FW-0061-012 B920-FW-0061-013 B920-FW-0064-004 B920-FW-0066-002 B920-FW-0066-004 B920-FW-0067-001 B920-FW-0070-002 B920-FW-0070-004 B920-FW-0070-005 B920-FW-0071-002 B920-FW-0071-005 B920-FW-0071-006 B920-FW-0071-007 B920-FW-0071-008W B920-FW-0071-010 B920-FW-0071-011 B920-FW-0072-001 B920-FW-0075-001 B920-FW-0075-002 B920-FW-0077-002W B920-FW-0097-006W B920-FW-0114-001 B920-FW-0116-001 B920-FW-0116-002 B920-FW-0116-003 B920-FW-0116-004 B920-FW-0116-005 B920-FW-0333-002 B920-FW-0335-002 B920-FW-0335-005 B920-W-0576-013W B930-D-0067-002 B930-D-0182-002 B930-DA-0046-009 B930-DA-0046-010 B930-DA-0046-011 B930-DO-0049-001W B930-DO-0049-002 B930-DO-0049-003 B930-DO-0052-001W B930-DO-0052-002 B930-DO-0052-003 B930-EG-0006-007 B930-EG-0010-011 B930-EG-0016-009 B930-FL-0007-002 B930-FW-0005-001 B930-FW-0005-002 B930-FW-0021-001 B930-FW-0021-002 B930-FW-0021-004 B930-FW-0021-010 B930-FW-0021-016 B930-FW-0027-002 B930-FW-0096-007W B930-FW-0099-004 B930-FW-0251-001 B930-FW-0366-001 B930-FW-0366-002 B930-FW-0367-004 B930-FW-0369-002 B930-FW-0369-004 B930-FW-0369-008 B930-FW-0372-004 B930-GW-0386-012 B930-H-3020-001W B930-H-3020-002 B930-H-3020-008 B930-H-3020-012 B930-H-3020-013 B930-H-3020-014 B930-H-3020-015 B930-H-3020-016 B930-H-3020-017 B930-H-3021-001W B930-H-3021-002 C208P-TL-0262-001 C208P-TL-0263-001 C208P-TL-0263-002 C209S-TL-0252-001 D02S-TL-0172-001P D06P-CV-0091-001P D06S-TL-0038-001P D07P-PLD-0009-003P D07S-PCG-5504-002P D07S-PCW-0182-004 D08P-PLD-0023-001P D08S-PCW-0182-001 D08S-TL-0191-001P D09S-PCG-5502-001P D09S-PCG-5502-002P D10P-PLD-0005-001P D10P-PLD-0022-001P D12S-TL-0101-001P D13S-PLD-0013-001 D13S-TR-0014-002 D16S-AO-5523-003P ER-H-0006-001 ER-H-0010-004 ER-H-0011-003 ER-H-0014-003 ER-H-0083-001 ER-H-0083-004 ER-H-0084-001 ER-H-0084-004 ER-H-0086-004 ER-H-0088-005 ER-H-0338-013 ER-H-0553-001 ER-H-8327-005 ER-H-8327-006 F71S-DA-0007-002P F71S-DA-0007-003P F71S-DA-0254-001W F71S-DA-0280-001H F71S-DA-0280-002 F71S-DA-0293-001 F71S-DA-0294-001 F71S-DA-0528-001P F71S-DA-0528-002W F71S-DA-0529-001P F71S-DA-0529-003W F71S-DA-0533-004 F71S-DA-0533-005P F72-DA-0129-001W F72-DA-0129-004W F72-DA-0262-001W F72-DA-0262-002 F72-DA-0309-003 F73-SW-0068-001P F73-SW-0071-001P F73-SW-5601-001 F73-SW-5601-002 F73-SW-5601-003P F81P-BR-0042-001P F81P-BR-0042-002P F81P-BR-0042-003 F81P-BR-0042-004 F81P-BR-0042-005P F81P-BR-0042-006 F81P-BR-0042-007 F81P-BR-0042-008 F81P-CV-0078-001 F81P-CV-0078-002W F81P-DA-1229-001P F81P-DA-1374-001W F81P-DA-1377-001W F81P-DO-0026-001W F81P-DO-0026-002 F81P-DO-0027-001W F81P-DO-0027-002 F81P-DO-0027-003 F81P-FL-0021-001W F81P-FL-0021-002 F81P-FW-0044-003P F81P-FW-0044-004W F81P-FW-0292-001 F81P-FW-0356-001P F81P-FW-0356-002P F81P-FW-0356-006 F81P-H-5002-003P F81P-H-5215-004P F81P-H-5216-003 F81P-H-5228-005P F81P-IA-0107-002 F81P-IA-0107-003 F81P-IA-0107-004 F81P-IA-0107-005 F81P-IA-0107-006P F81P-IA-0107-007 F81P-IA-0107-008 F81P-IA-0168-001W F81P-IA-0203-004W F81P-SA-0050-006P F81P-SA-0105-007W F81P-SA-0105-008W F81P-SP-0034-003 F81P-SP-0069-002 F81P-SP-0112-004 F81P-SP-1006-001W F81P-SP-1036-001P F81P-SP-1036-002P F81P-SP-1036-003 F81P-SP-1037-001 F81P-SP-1037-002 F81P-SP-1037-003 F81P-W-0057-007 F81P-W-0057-009 F81P-W-0057-011P F81P-W-0057-012 F81P-W-0075-005W F81P-W-0528-005W F81S-BG-0064-005 F81S-BR-0040-002 F81S-BR-0040-004 F81S-BR-0040-010 F81S-D-0089-008W F81S-D-0090-005 F81S-D-0090-006W F81S-D-0091-006W F81S-D-0097-001W F81S-DA-0269-005 F81S-DA-0274-002 F81S-DA-0274-003 F81S-DA-0274-004 F81S-DA-0274-006 F81S-DA-0530-001W F81S-DA-0530-002 F81S-DA-0530-003H F81S-DA-0531-002 F81S-DA-0531-003 F81S-DA-0531-004H F81S-DA-0533-003H F81S-DO-0101-001 F81S-DO-0101-002 F81S-DO-0101-003 F81S-DO-0101-004 F81S-DO-0101-008 F81S-FG-0058-004P F81S-FG-0059-006 F81S-FG-0099-006 F81S-FG-0100-003 F81S-IA-0106-007W F81S-IA-0133-003 F81S-IA-0133-004 F81S-IA-0163-001 F81S-IA-0163-002 F81S-SA-0049-001 F81S-SA-0060-004P F81S-SN-0001-014W F81S-SN-0008-014W F81S-SP-0047-003P F81S-SP-0048-001 F81S-SP-0091-005 F81S-SP-0113-003 F81S-SP-0133-001P F81S-SP-0133-002P F81S-STA-0011-003W F82-BR-0040-001H F82-BR-0042-001H F82-BR-0042-002W F82-DO-0027-008 F82-DTH-0003-001P F82-DTH-0017-001P F82-FL-0033-001 F82-FL-0033-002W F82-FW-0056-001H F82-FW-0056-007P F82-FW-0205-001H F82-FW-0356-005P F82-H-5218-003 F82-H-5218-005W F82-H-5219-001W F82-H-5220-001W F82-H-5221-002P F82-H-5221-003W F82-H-5222-001W F82-H-5222-002P F82-H-5223-001W F82-H-5223-002P F82-H-5226-007W F82-IA-0126-014 F82-IA-0132-002 F82-IA-0132-004P F82-IA-0132-007 F82-IA-0132-015P F82-IA-0154-001W F82-PW-0096-007 F82-PW-0096-009W F82-PW-0118-010W F82-SA-0017-002 F82-SA-0017-003W F82-SA-0049-005 F82-SA-0106-004H F82-SA-0179-001 F82-SA-0179-002 F82-SA-0179-003W F82-SA-0203-012 F82-SA-0204-010W F82-SA-0204-011 F82-SP-0093-003 F82-W-0172-003 F82-W-0172-011 F82-W-0173-007 F85-CV-0200-001W F85-D-0088-001W F85-D-0093-004W F85-D-0096-001W F85-D-0096-003W FB11P-DTH-0001-004 FB11P-DTH-0002-001 FB11S-DTH-0003-001 FB11S-DTH-0004-001 FL11P-TL-0009-002 FL11P-TL-0025-002 FL11S-SP-0047-001 FL11S-SP-0047-002 FL11S-SP-0047-003 FL11S-TL-0008-002 HD01-DA-0465-006 HD01-FL-0037-001W HD01-FL-0037-012 HD01-FL-0038-001W HD01-FL-0038-013 HD01-FL-0039-001W HD01-FL-0039-005 HPR-BG-0062-003 HPR-BG-0062-004 HPR-BG-0063-001 HPR-BG-0124-021 HPR-BG-0124-026 HPR-BG-0124-101 HPR-BG-0125-001 HPR-BG-0127-007H HPRC1-BG-0126-002 HPRC1-BG-0126-003H HPRC1-CV-0084-001 HPRC1-CV-0088-005 HPRC1-CV-0089-002 HPRC1-TR-0001-002 HPRC1-TR-0002-005 HPRC1-TR-0002-006 HPRC2-BG-0057-003 HPRC2-BG-0060-007 HPRC2-BG-0060-010 HPRC2-CV-0065-007 HPRC2-CV-0073-013 HPRC2-CV-0074-007 HPRC2-CV-0074-009 HPRC2-CV-0074-010 HPRC2-CV-0091-010 HPRC2-PCG-0032-005 HPRC2-TC-0005-005 HPR-CNI-0026-001 HPR-CNI-0026-024 HPR-CV-0010-002 HPR-CV-0010-003 HPR-CV-0042-001 HPR-CV-0078-002 HPR-CV-0080-005 HPR-DA-0519-001 HPR-DA-0519-008 HPR-DA-0737-001 HPR-DA-0737-002 HPR-DA-0737-004H HPR-FL-0045-013 HPR-FLC-0011-012 HPR-FLC-0011-014 HPR-FLC-0029-001 HPR-FLC-0029-003 HPR-FLC-0036-001 HPR-FW-0016-002 HPR-FW-0016-003 HPR-FW-0068-001 HPR-FW-0127-004 HPR-FW-0127-013H HPR-FW-0131-010 HPR-FW-0133-002 HPR-FW-0133-003 HPR-FW-0180-016 HPR-FW-0180-017 HPR-FW-0180-019 HPR-FW-0180-034 HPR-FW-0337-003H HPR-FW-0337-008H HPR-H-9877-002 HPRP2-BG-0128-001 HPR-PCG-0016-011W HPR-PCG-0035-005W HPR-PCG-0036-001W HPR-PCG-0036-002 HPR-PCG-0063-002 HPR-PCG-0063-005 HPR-PW-0094-011 HPR-SW-0018-018 HPR-TC-0002-002H HPR-TC-0002-003 HPR-TC-0002-017 HPR-TC-0088-012 HPR-TC-0088-013H L03P-DTH-0005-001 L03S-DTH-0007-001 L05S-TL-0044-002 L07P-TL-0041-002 L07S-TL-0026-001 L07S-TL-0026-002 L09S-TL-0010-002 L12P-TL-0109-001 L12S-TL-0094-002 L14P-TL-0128-002 L14S-TL-0110-001 M15B1-FW-0340-001 M15B1-IA-0004-005 M15B1-IA-0004-006 M15B1-IA-0016-002 M15B1-IA-0032-002 M15B1-IA-0032-003 M15B1-IA-0032-004 M15B1-IA-0048-003 M15B1-IA-0048-006 M15B1-IA-0056-003 M15B1-IA-0058-005 M15B1-IA-0083-003 M15B1-IA-0085-001 M15B1-IA-0086-001 M15B2-W-0157-002 M15B2-W-0455-003 M15B2-W-0457-003 M15B2-W-0581-001 M15B2-W-0627-002 M15B3-BG-0942-001 M15B3-BG-0973-003 M15B3-D-0149-001 M15B3-D-0162-005 M15B3-D-0181-005 M15B3-D-0206-008 M15B3-D-0206-009 M15B3-D-0206-010 M15B3-D-0304-001 M15B3-D-0304-003 M15B3-D-0304-004 M15B3-D-0306-003 M15B3-D-0306-004 M15B3-D-0306-005 M15B3-D-0306-006 M15B3-D-8021-001 M15B3-D-8021-002 M15B3-D-8021-003 M15B3-D-8024-004 M15B3-D-8024-005 M15B3-D-8025-001 M15B3-D-8025-002 M15B3-D-8028-004 M15B3-D-8028-005 M15B3-DA-0171-002 M15B3-DA-5001-001 M15B3-DA-8005-001 M15B3-EG-0009-002 M15B3-EG-0009-004 M15B3-EG-0009-005 M15B3-EG-0009-006 M15B3-EG-0009-007 M15B3-EG-0009-008 M15B3-EG-0009-009 M15B3-EG-0009-010 M15B3-EG-0009-011 M15B3-EG-0137-001 M15B3-IA-0005-001 M15B3-IA-0006-003 M15B3-IA-0036-003 M15B3-IA-0038-001 M15B3-IA-0038-002 M15B3-IA-0038-004 M15B3-IA-0038-005 M15B3-IA-0040-001 M15B3-IA-0091-001 M15B3-IA-0123-001 M15B3-OL-8010-001 M15B3-OL-8020-001H M15B3-OL-8020-002 M15B3-OL-8020-003 M15B3-OL-8020-004 M15B3-OL-8020-005 M15B3-OL-8020-006H M15B3-OL-8025-001H M15B3-OL-8025-002 M15B3-OL-8025-003 M15B3-OL-8025-004 M15B3-OL-8025-005 M15B3-OL-8305-003W M15B3-OL-8306-001 M15B3-OL-8306-002W M15B3-SA-0001-002 M15B3-SA-0116-005 M15B3-SA-0117-005 M15B3-SA-0118-008 M15B3-SA-0119-006 M15B3-SA-0378-004 M15B3-SA-0378-005 M15B3-SA-0406-010 M15B3-SP-0127-002 M15B3-SP-0135-001 M15B3-SP-0135-012 M15B3-SP-0136-001 M15B3-SP-0136-010 M15B3-SP-0136-012 M15B3-SW-0022-001 M15B3-W-0504-004 M15B3-W-0504-005 M15B3-W-0531-014 M15B3-W-0536-008 M15B3-W-0536-009 M15B3-W-0536-016 M15B3-W-0957-001 M15B3-W-0957-002 M15B3-W-8013-002W M15B3-W-8014-002 M15B3-W-8014-005W M15B3-W-8015-002W M15B3-W-8020-003 M15B3-W-8021-002 M15B3-W-8022-002 M15B3-W-8022-005 M15B3-W-8023-003W M15B3-W-8035-003W M15B3-W-8036-002W M15B3-W-8037-002 M15B3-W-8037-006W M15B3-W-8038-002W M15B3-W-8042-001W M15B3-W-8042-002 M15B3-W-8044-002 M15B4-DA-0104-001 M15B4-DA-0104-002 M15B4-DA-0107-004 M15B4-DA-0170-001 M15B4-DA-0170-003 M15B4-DA-0173-007 M15B4-DA-0174-004 M15B4-DA-0194-009 M15B4-DA-0242-003 M15B4-DA-0244-001 M15B4-STA-0031-001 M15B4-STA-0031-004 M15B4-STA-0102-014 M15B4-STA-0103-001 M15B4-STA-0103-003 M15B4-STA-0104-002 M15B4-STA-0107-013 M15B4-STA-0108-001 M15B4-STA-0110-001 M15B4-STA-8006-003 M15B4-STA-8007-002 M15B4-STA-8012-003 M15B4-STA-8013-003 M15B4-W-8010-001W M15B4-W-8010-002 M15B4-W-8011-001W M15B4-W-8033-001W M15B4-W-8033-002 M15B4-W-8034-001W M15B-D-0123-001P M15B-D-0123-002 M15B-D-0123-006 M15B-D-0301-001 M15B-D-0301-002 M15B-D-0301-011 M15B-D-0301-012 M15B-D-0302-005 M15B-D-0302-009 M15B-D-0302-011 M15B-D-0303-001 M15B-D-0303-002 M15B-D-0303-012 M15B-D-0303-013 M15B-D-0308-004 M15B-D-0308-010 M15B-D-0308-012 M15B-D-8024-008 M15B-D-8024-009 M15B-D-8028-001W M15B-D-8028-008 M15B-DA-0214-003 M15B-DA-0214-005W M15B-DA-0217-003 M15B-DA-0217-005W M15B-DA-0321-003 M15B-DA-0321-005W M15B-DA-0329-005W M15B-DA-0333-003 M15B-SW-1643-001P M15B-SW-1643-002P M15B-SW-1655-002 M15B-SW-1655-008 M15B-W-0082-006 MDK-CNI-0106-001P MDK-CNI-0106-005 MDK-CNI-0121-001P MDK-CNI-0121-005 MDK-CNI-0271-001P MDK-CNI-0271-002 MDK-CNI-0278-001P MDK-CNI-0278-002 MDK-CNI-0291-002 MDK-CNI-0535-002 MDK-CNI-0535-007P MDK-CNI-0536-002 MDK-CNI-0536-007P MDK-CNI-0912-002 MDK-CNI-0912-007P MDK-CNI-0915-002 MDK-CNI-0915-007P MDK-CNI-2102-002 MDK-CNI-2102-008P MDK-CNI-2103-002 MDK-CNI-2103-008P MDK-DA-1011-001 MDK-DA-1011-002 MDK-DA-1011-003 MDK-DA-1011-004 MDK-DA-1011-005 MDK-DA-1011-006 MDK-DA-1012-001 MDK-DA-1012-002 MDK-DA-1012-003 MDK-DA-1013-001 MDK-DA-1014-001 MDK-DA-1014-002P MDK-H-0066-001 MDK-H-0270-002W MDK-H-0370-001W MDK-H-0481-005 MDK-H-0481-006 MDK-H-0491-006 MDK-H-0491-007 MDK-H-0498-001 MDK-H-0498-002 MDK-H-0498-003 MDK-H-0499-001 MDK-H-0499-002 MDK-H-0499-003 MDK-H-0517-001 MDK-H-0517-002 MDK-H-0517-003 MDK-H-0517-004 MDK-H-0539-001 MDK-H-0539-002 MDK-H-0539-003 MDK-H-0539-004 MDK-H-0551-001 MDK-H-0551-002 MDK-H-0551-003 MDK-H-0551-004 MDK-H-0556-001 MDK-H-0556-002 MDK-H-0556-003 MDK-H-0558-001W MDK-H-0558-002 MDK-H-0558-003P MDK-H-0561-001W MDK-H-0561-002 MDK-H-0562-001W MDK-H-0562-002P MDK-H-0564-001W MDK-H-0564-002 MDK-H-0565-001W MDK-H-0565-002P MDK-H-0573-001W MDK-H-0573-002 MDK-H-0573-003P MDK-H-2800-001W MDK-H-3100-002W MDK-H-7101-020 MDK-H-7101-021 MDK-H-7101-022 MDK-H-7101-024 MDK-H-7101-025 MDK-H-7101-028 MDK-H-7101-029 MDK-H-7101-030 MDK-H-7101-031 MDK-H-7101-032 MDK-H-7101-033 MDK-H-7101-035 MDK-H-7111-020 MDK-H-7111-021 MDK-H-7111-022 MDK-H-7111-024 MDK-H-7111-025 MDK-H-7111-028 MDK-H-7111-029 MDK-H-7111-030 MDK-H-7111-031 MDK-H-7111-032 MDK-H-7111-033 MDK-H-7111-035 MDK-H-7111-036 MDK-H-7112-001 MDK-H-7116-002P MDK-H-7116-003W MDK-H-7117-001 MDK-H-7121-010 MDK-H-7121-012 MDK-H-7121-013 MDK-H-7121-016 MDK-H-7121-017 MDK-H-7121-018 MDK-H-7121-020 MDK-H-7121-021 MDK-H-7121-024 MDK-H-7121-027 MDK-H-7121-028 MDK-H-7121-029 MDK-H-7121-031 MDK-H-7121-032 MDK-H-7121-033P MDK-H-7122-001W MDK-H-7122-002P MDK-H-7122-003 MDK-H-7123-001W MDK-H-7123-002P MDK-H-7125-003P MDK-H-7127-001 MDK-H-7131-010 MDK-H-7131-012 MDK-H-7131-013 MDK-H-7131-015 MDK-H-7131-016 MDK-H-7131-017 MDK-H-7131-018 MDK-H-7131-019 MDK-H-7131-020 MDK-H-7131-021 MDK-H-7131-022 MDK-H-7131-023 MDK-H-7131-024 MDK-H-7131-025 MDK-H-7131-027 MDK-H-7131-028 MDK-H-7131-029 MDK-H-7131-030 MDK-H-7131-031 MDK-H-7132-001W MDK-H-7132-002P MDK-H-7132-003 MDK-H-7133-001W MDK-H-7133-002P MDK-H-7135-003P MDK-H-7141-010 MDK-H-7141-012 MDK-H-7141-013 MDK-H-7141-015 MDK-H-7141-016 MDK-H-7141-017 MDK-H-7141-018 MDK-H-7141-019 MDK-H-7141-020 MDK-H-7141-021 MDK-H-7141-023 MDK-H-7141-024 MDK-H-7141-025 MDK-H-7141-027 MDK-H-7141-028 MDK-H-7141-029 MDK-H-7141-030 MDK-H-7141-031 MDK-H-7141-032 MDK-H-7142-001P MDK-H-7147-001 MDK-H-7151-014 MDK-H-7151-015 MDK-H-7151-016 MDK-H-7151-017 MDK-H-7151-020 MDK-H-7151-021 MDK-H-7151-022 MDK-H-7151-024 MDK-H-7151-025 MDK-H-7151-027 MDK-H-7151-028 MDK-H-7151-029 MDK-H-7151-031 MDK-H-7151-032 MDK-H-7151-033 MDK-H-7151-034 MDK-H-7152-001W MDK-H-7152-004 MDK-H-7152-005 MDK-H-7154-002P MDK-H-7161-001 MDK-H-7161-002P MDK-H-7161-003W MDK-H-7162-003P MDK-H-8306-019 MDK-H-8321-024 MDK-H-8328-003 MDK-H-8340-023 MDK-H-8340-024H MDK-H-8380-034 MDK-W-0567-001 R01P-TR-0013-001 R03S-TR-0007-001 R06P-P-0004-001 R06P-TR-0010-001 R06P-TR-0028-001 R08P-TC-6010-001 R08P-TC-6010-002 R08P-TC-6010-003 R08P-TC-6010-004 R09P-PCW-0190-001 R09P-PCW-0190-002 R13S-PLD-0013-001 R13S-PLD-0013-004 R13S-TR-0014-001 R13S-TR-0014-003 R13S-TR-0014-004 T09C-TC-6002-001 T16P-BWG-0017-001 T-MA-543050130-001 T-MA-543050130-002 T-MA-543050130-003 T-MB-543050130-001 T-MB-543050130-002 T-MB-543050130-003 T-P1-543050118-001 T-P1-543050118-002 T-P1-543050118-003 T-P1-543050118-004 T-P2-543050130-001 T-P2-543050130-002 T-T-543050135-001 T-T-543050135-002 T-YA-543050118-001 T-YA-543050118-002 T-YA-543050118-003 T-YA-543050118-004 T-YB-543050118-001 T-YB-543050118-002 T-YB-543050118-003 T-YB-543050118-004 U02S-SP-0042-001P U03P-DTH-0005-001P U03P-DTH-0005-003 U03P-DTH-0015-001 U03S-DTH-0007-001P U03S-DTH-0007-004 U03S-DTH-0016-001 U04P-SW-5614-004 U04S-SW-5608-004 U04S-TL-0029-001P U05S-DA-8122-002P U05S-DA-8125-002P U05S-SP-0044-001P U05S-SW-5611-004 U06P-TL-0056-001P U06S-TL-0045-001P U07P-SP-0032-001P U07S-SP-0045-001P U07S-SW-5607-004 U08P-TL-0084-001P U08P-TL-0261-001P U08P-TL-0261-002 U08P-TL-0262-001P U08P-TL-0262-002 U08P-TL-0263-001P U08P-TL-0263-002 U08S-TL-0066-001P U08S-TL-0250-001P U08S-TL-0250-002 U09P-SP-0033-003P U09P-SP-0066-001P U09P-SP-0067-001P U09P-SW-5606-001 U09P-SW-5606-004 U09S-SP-0046-001P U09S-SW-5605-004 U09S-TL-0011-004P U09S-TL-0251-001P U09S-TL-0251-002 U09S-TL-0251-003 U09S-TL-0252-001P U09S-TL-0252-002 U09S-TL-0252-003 U11P-SP-0034-004P U11P-SW-5604-004 U11S-SP-0047-001P U11S-SW-5603-003 U12P-SP-0029-001P U12S-SP-0041-001P U12S-SW-5609-004 U14P-PCG-5514-002P U14P-SP-0028-003P U14P-SW-5618-004 U14S-DA-8128-002P U14S-SP-0040-003P U14S-SW-5612-004 U15P-SP-0027-001P U15P-SW-5616-004 U15S-SW-5610-004 U16P-TC-6049-004 VT01-CV-0200-008 VT01-CV-0200-009 VT01-DO-0100-008W VT01-DO-0101-001 VT01-DO-0101-010 VT1-FL-0021-004W YPRAF-W--0074-010 YPR-BG-0124-054 YPRC1-BG-0057-009 YPRC1-BG-0110-009 YPRC1-BG-0131-002 YPRC2-BG-0133-002 YPR-CNI-0026-052 YPR-CV-0014-001 YPR-CV-0022-001 YPR-CV-0023-001 YPR-CV-0049-002 YPR-CV-0057-009 YPR-CV-0062-003 YPR-CV-0079-001 YPR-CV-0079-005 YPR-CV-0093-004 YPR-CV-0102-001 YPR-DA-0190-031 YPR-DA-0190-034 YPR-DA-0737-006 YPR-FL-0005-008 YPR-FL-0005-020 YPR-FL-0008-009 YPR-FL-0008-018 YPR-FLC-0006-015 YPR-FLC-0006-027 YPR-FLC-0040-037 YPR-FLC-0045-009 YPR-FLC-0045-036 YPR-FLC-0066-003 YPR-FW-0018-006 YPR-FW-0063-011 YPR-FW-0063-021 YPR-FW-0063-022 YPR-FW-0076-001 YPR-FW-0076-011 YPR-FW-0082-004 YPR-FW-0087-012W YPR-FW-0101-002 YPR-FW-0101-005 YPR-FW-0102-007 YPR-FW-0133-027 YPR-FW-0180-005 YPR-FW-0180-017 YPR-FW-0180-022 YPR-FW-0180-050 YPR-FW-0180-063 YPR-FW-0180-074 YPR-FW-0180-082 YPR-FW-0180-088 YPR-FW-0338-001H YPR-FW-0338-010 YPR-FW-0423-001 YPR-FW-0423-015 YPR-FW-0423-020 YPR-H-9858-003 YPR-PCG-0002-001 YPR-PCG-0015-002 YPR-PCG-0041-002 YPR-PW-0094-010 YPR-PW-0094-058 YPR-PW-0094-059 YPR-PW-0094-061 YPR-PW-0094-062 YPRS1-FL-0040-002H YPRS2-FL-0009-016 YPR-SW-0042-023 YPR-SW-0063-023 YPR-TC-0001-010 YPR-TC-0014-013H YPR-TC-0052-001 YPR-TR-0002-018 YPR-TR-0011-001 YPR-TR-0014-007 YPR-TR-0027-001 找出重复的
10-11
练集样本数: 3296 验证集样本数: 825 🚀 开始训练模型: CNN (base) PS F:\博士开题\YOLO\异常信号二次筛选\PS\ch1> f:; cd 'f:\博士开题\YOLO\异常信号二次筛选\PS\ch1'; & 'd:\anaconda1\python.exe' 'c:\Users\lejmj\.vscode\extensions\ms-python.debugpy-2025.15.2025101002-win32-x64\bundled\libs\debugpy\launcher' '57528' '--' 'F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\D1.py' 训练集样本数: 3296 验证集样本数: 825 🚀 开始训练模型: CNN (base) PS F:\博士开题\YOLO\异常信号二次筛选\PS\ch1> f:; cd 'f:\博士开题\YOLO\异常信号二次筛选\PS\ch1'; & 'd:\anaconda1\python.exe' 'c:\Users\lejmj\.vscode\extensions\ms-python.debugpy-2025.15.2025101002-win32-x64\bundled\libs\debugpy\launcher' '55626' '--' 'F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py' 检查路径是否存在: 正常信号路径: False 异常信号路径: False (base) PS F:\博士开题\YOLO\异常信号二次筛选\PS\ch1> f:; cd 'f:\博士开题\YOLO\异常信号二次筛选\PS\ch1'; & 'd:\anaconda1\python.exe' 'c:\Users\lejmj\.vscode\extensions\ms-python.debugpy-2025.15.2025101002-win32-x64\bundled\libs\debugpy\launcher' '55654' '--' 'F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py' 检查路径是否存在: 正常信号路径: True 异常信号路径: True 找到 157 个正常信号图像 找到 3964 个异常信号图像 总样本数: 4121 开始预处理图像... 处理进度: 100/4121 处理进度: 200/4121 处理进度: 300/4121 处理进度: 400/4121 处理进度: 500/4121 处理进度: 600/4121 处理进度: 700/4121 处理进度: 800/4121 处理进度: 900/4121 处理进度: 1000/4121 处理进度: 1100/4121 处理进度: 1200/4121 处理进度: 1300/4121 处理进度: 1400/4121 处理进度: 1500/4121 处理进度: 1600/4121 处理进度: 1700/4121 处理进度: 1800/4121 处理进度: 1900/4121 处理进度: 2000/4121 处理进度: 2100/4121 处理进度: 2200/4121 处理进度: 2300/4121 处理进度: 2400/4121 处理进度: 2500/4121 处理进度: 2600/4121 处理进度: 2700/4121 处理进度: 2800/4121 处理进度: 2900/4121 处理进度: 3000/4121 处理进度: 3100/4121 处理进度: 3200/4121 处理进度: 3300/4121 处理进度: 3400/4121 处理进度: 3500/4121 处理进度: 3600/4121 处理进度: 3700/4121 处理进度: 3800/4121 处理进度: 3900/4121 处理进度: 4000/4121 处理进度: 4100/4121 成功处理 4121 张图像 图像形状: (224, 224, 3) 类别分布: {0: 157, 1: 3964} 训练集: 2636 样本 验证集: 660 样本 测试集: 825 样本 === 训练简单CNN模型 (TensorFlow) === Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 222, 222, 32) 896 max_pooling2d (MaxPooling2D (None, 111, 111, 32) 0 ) conv2d_1 (Conv2D) (None, 109, 109, 64) 18496 max_pooling2d_1 (MaxPooling (None, 54, 54, 64) 0 2D) conv2d_2 (Conv2D) (None, 52, 52, 64) 36928 flatten (Flatten) (None, 173056) 0 dense (Dense) (None, 64) 11075648 dropout (Dropout) (None, 64) 0 dense_1 (Dense) (None, 1) 65 ================================================================= Total params: 11,132,033 Trainable params: 11,132,033 Non-trainable params: 0 _________________________________________________________________ None Epoch 1/30 83/83 [==============================] - 64s 755ms/step - loss: 0.1381 - accuracy: 0.9700 - val_loss: 0.0055 - val_accuracy: 0.9985 - lr: 0.0010 Epoch 2/30 83/83 [==============================] - 60s 719ms/step - loss: 0.0263 - accuracy: 0.9913 - val_loss: 0.0162 - val_accuracy: 0.9970 - lr: 0.0010 Epoch 3/30 83/83 [==============================] - 59s 707ms/step - loss: 0.0190 - accuracy: 0.9985 - val_loss: 0.0017 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 4/30 83/83 [==============================] - 59s 716ms/step - loss: 0.0147 - accuracy: 0.9992 - val_loss: 0.0045 - val_accuracy: 0.9970 - lr: 0.0010 Epoch 5/30 83/83 [==============================] - 58s 705ms/step - loss: 0.0408 - accuracy: 0.9958 - val_loss: 0.0051 - val_accuracy: 0.9985 - lr: 0.0010 Epoch 6/30 83/83 [==============================] - 58s 704ms/step - loss: 0.0283 - accuracy: 0.9951 - val_loss: 0.0086 - val_accuracy: 0.9970 - lr: 0.0010 Epoch 7/30 83/83 [==============================] - 59s 715ms/step - loss: 0.0098 - accuracy: 0.9973 - val_loss: 0.0255 - val_accuracy: 0.9970 - lr: 0.0010 Epoch 8/30 83/83 [==============================] - 60s 719ms/step - loss: 0.0347 - accuracy: 0.9981 - val_loss: 0.0112 - val_accuracy: 0.9955 - lr: 0.0010 Epoch 9/30 83/83 [==============================] - 59s 715ms/step - loss: 0.0141 - accuracy: 0.9992 - val_loss: 0.0126 - val_accuracy: 0.9970 - lr: 5.0000e-04 Epoch 10/30 83/83 [==============================] - 59s 710ms/step - loss: 0.0039 - accuracy: 0.9981 - val_loss: 0.0102 - val_accuracy: 0.9970 - lr: 5.0000e-04 Epoch 11/30 83/83 [==============================] - 58s 705ms/step - loss: 0.0018 - accuracy: 0.9996 - val_loss: 0.0099 - val_accuracy: 0.9970 - lr: 5.0000e-04 Epoch 12/30 83/83 [==============================] - 59s 708ms/step - loss: 0.0058 - accuracy: 0.9996 - val_loss: 0.0169 - val_accuracy: 0.9970 - lr: 5.0000e-04 Epoch 13/30 83/83 [==============================] - 58s 704ms/step - loss: 8.5977e-04 - accuracy: 0.9996 - val_loss: 0.0029 - val_accuracy: 0.9985 - lr: 5.0000e-04 简单CNN测试准确率: 0.9988 === 训练深度CNN模型 (TensorFlow) === Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_3 (Conv2D) (None, 222, 222, 32) 896 batch_normalization (BatchN (None, 222, 222, 32) 128 ormalization) max_pooling2d_2 (MaxPooling (None, 111, 111, 32) 0 2D) conv2d_4 (Conv2D) (None, 109, 109, 64) 18496 batch_normalization_1 (Batc (None, 109, 109, 64) 256 hNormalization) max_pooling2d_3 (MaxPooling (None, 54, 54, 64) 0 2D) conv2d_5 (Conv2D) (None, 52, 52, 128) 73856 batch_normalization_2 (Batc (None, 52, 52, 128) 512 hNormalization) max_pooling2d_4 (MaxPooling (None, 26, 26, 128) 0 2D) conv2d_6 (Conv2D) (None, 24, 24, 256) 295168 batch_normalization_3 (Batc (None, 24, 24, 256) 1024 hNormalization) global_average_pooling2d (G (None, 256) 0 lobalAveragePooling2D) dense_2 (Dense) (None, 128) 32896 dropout_1 (Dropout) (None, 128) 0 dense_3 (Dense) (None, 1) 129 ================================================================= Total params: 423,361 Trainable params: 422,401 Non-trainable params: 960 _________________________________________________________________ None Epoch 1/30 83/83 [==============================] - 106s 1s/step - loss: 0.1259 - accuracy: 0.9753 - val_loss: 0.2609 - val_accuracy: 0.9621 - lr: 0.0010 Epoch 2/30 83/83 [==============================] - 103s 1s/step - loss: 0.0300 - accuracy: 0.9920 - val_loss: 0.1903 - val_accuracy: 0.9621 - lr: 0.0010 Epoch 3/30 83/83 [==============================] - 105s 1s/step - loss: 0.0131 - accuracy: 0.9970 - val_loss: 0.3777 - val_accuracy: 0.9621 - lr: 0.0010 Epoch 4/30 83/83 [==============================] - 104s 1s/step - loss: 0.0132 - accuracy: 0.9966 - val_loss: 0.1598 - val_accuracy: 0.9621 - lr: 0.0010 Epoch 5/30 83/83 [==============================] - 104s 1s/step - loss: 0.0036 - accuracy: 0.9996 - val_loss: 0.5251 - val_accuracy: 0.9621 - lr: 0.0010 Epoch 6/30 83/83 [==============================] - 104s 1s/step - loss: 0.0064 - accuracy: 0.9977 - val_loss: 0.4136 - val_accuracy: 0.9621 - lr: 0.0010 Epoch 7/30 83/83 [==============================] - 103s 1s/step - loss: 0.0027 - accuracy: 0.9996 - val_loss: 0.0622 - val_accuracy: 0.9864 - lr: 0.0010 Epoch 8/30 83/83 [==============================] - 103s 1s/step - loss: 0.0042 - accuracy: 0.9992 - val_loss: 2.4309 - val_accuracy: 0.4212 - lr: 0.0010 Epoch 9/30 83/83 [==============================] - 103s 1s/step - loss: 3.2227e-04 - accuracy: 1.0000 - val_loss: 0.0398 - val_accuracy: 0.9894 - lr: 0.0010 Epoch 10/30 83/83 [==============================] - 103s 1s/step - loss: 0.0055 - accuracy: 0.9992 - val_loss: 2.7218 - val_accuracy: 0.4485 - lr: 0.0010 Epoch 11/30 83/83 [==============================] - 105s 1s/step - loss: 5.3121e-04 - accuracy: 1.0000 - val_loss: 0.0381 - val_accuracy: 0.9864 - lr: 0.0010 Epoch 12/30 83/83 [==============================] - 106s 1s/step - loss: 2.7901e-04 - accuracy: 1.0000 - val_loss: 3.2564e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 13/30 83/83 [==============================] - 103s 1s/step - loss: 1.4393e-04 - accuracy: 1.0000 - val_loss: 3.0266e-05 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 14/30 83/83 [==============================] - 103s 1s/step - loss: 1.0170e-04 - accuracy: 1.0000 - val_loss: 0.0023 - val_accuracy: 0.9985 - lr: 0.0010 Epoch 15/30 83/83 [==============================] - 103s 1s/step - loss: 1.3439e-04 - accuracy: 1.0000 - val_loss: 0.0537 - val_accuracy: 0.9848 - lr: 0.0010 Epoch 16/30 83/83 [==============================] - 103s 1s/step - loss: 1.1198e-04 - accuracy: 1.0000 - val_loss: 0.0103 - val_accuracy: 0.9955 - lr: 0.0010 Epoch 17/30 83/83 [==============================] - 103s 1s/step - loss: 5.8652e-05 - accuracy: 1.0000 - val_loss: 0.0935 - val_accuracy: 0.9667 - lr: 0.0010 Epoch 18/30 83/83 [==============================] - 103s 1s/step - loss: 7.4556e-05 - accuracy: 1.0000 - val_loss: 0.0354 - val_accuracy: 0.9924 - lr: 0.0010 Epoch 19/30 83/83 [==============================] - 102s 1s/step - loss: 3.4750e-05 - accuracy: 1.0000 - val_loss: 0.0050 - val_accuracy: 0.9985 - lr: 5.0000e-04 Epoch 20/30 83/83 [==============================] - 104s 1s/step - loss: 5.1109e-05 - accuracy: 1.0000 - val_loss: 0.0034 - val_accuracy: 0.9985 - lr: 5.0000e-04 Epoch 21/30 83/83 [==============================] - 102s 1s/step - loss: 6.8591e-05 - accuracy: 1.0000 - val_loss: 9.5372e-04 - val_accuracy: 1.0000 - lr: 5.0000e-04 Epoch 22/30 83/83 [==============================] - 103s 1s/step - loss: 5.3082e-05 - accuracy: 1.0000 - val_loss: 6.3523e-04 - val_accuracy: 1.0000 - lr: 5.0000e-04 Epoch 23/30 83/83 [==============================] - 103s 1s/step - loss: 4.1724e-05 - accuracy: 1.0000 - val_loss: 0.0013 - val_accuracy: 0.9985 - lr: 5.0000e-04 深度CNN测试准确率: 1.0000 === 训练预训练模型 (TensorFlow) === Model: "sequential_2" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= mobilenetv2_1.00_224 (Funct (None, 7, 7, 1280) 2257984 ional) global_average_pooling2d_1 (None, 1280) 0 (GlobalAveragePooling2D) dense_4 (Dense) (None, 128) 163968 dropout_2 (Dropout) (None, 128) 0 dense_5 (Dense) (None, 1) 129 ================================================================= Total params: 2,422,081 Trainable params: 164,097 Non-trainable params: 2,257,984 _________________________________________________________________ None Epoch 1/20 83/83 [==============================] - 42s 451ms/step - loss: 0.0863 - accuracy: 0.9753 - val_loss: 0.0046 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 2/20 83/83 [==============================] - 36s 434ms/step - loss: 0.0083 - accuracy: 0.9985 - val_loss: 0.0017 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 3/20 83/83 [==============================] - 36s 433ms/step - loss: 0.0031 - accuracy: 0.9996 - val_loss: 7.3547e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 4/20 83/83 [==============================] - 36s 432ms/step - loss: 0.0023 - accuracy: 0.9996 - val_loss: 0.0012 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 5/20 83/83 [==============================] - 36s 434ms/step - loss: 0.0027 - accuracy: 0.9996 - val_loss: 4.6097e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 6/20 83/83 [==============================] - 36s 433ms/step - loss: 0.0022 - accuracy: 0.9996 - val_loss: 4.8222e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 7/20 83/83 [==============================] - 36s 437ms/step - loss: 0.0014 - accuracy: 1.0000 - val_loss: 0.0011 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 8/20 83/83 [==============================] - 36s 436ms/step - loss: 9.3960e-04 - accuracy: 1.0000 - val_loss: 1.9397e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 9/20 83/83 [==============================] - 36s 434ms/step - loss: 6.6778e-04 - accuracy: 1.0000 - val_loss: 8.4425e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 10/20 83/83 [==============================] - 36s 436ms/step - loss: 4.4138e-04 - accuracy: 1.0000 - val_loss: 2.6525e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 11/20 83/83 [==============================] - 36s 436ms/step - loss: 0.0012 - accuracy: 1.0000 - val_loss: 1.2021e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 12/20 83/83 [==============================] - 36s 434ms/step - loss: 9.6049e-04 - accuracy: 0.9996 - val_loss: 1.3571e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 13/20 83/83 [==============================] - 36s 435ms/step - loss: 4.1769e-04 - accuracy: 1.0000 - val_loss: 2.5014e-04 - val_accuracy: 1.0000 - lr: 0.0010 Epoch 14/20 83/83 [==============================] - 36s 433ms/step - loss: 5.9524e-04 - accuracy: 0.9996 - val_loss: 2.1576e-04 - val_accuracy: 1.0000 - lr: 5.0000e-04 Epoch 15/20 83/83 [==============================] - 37s 448ms/step - loss: 0.0014 - accuracy: 0.9992 - val_loss: 0.0025 - val_accuracy: 0.9985 - lr: 5.0000e-04 Epoch 16/20 83/83 [==============================] - 36s 434ms/step - loss: 4.3109e-04 - accuracy: 1.0000 - val_loss: 8.8710e-04 - val_accuracy: 1.0000 - lr: 5.0000e-04 Epoch 17/20 83/83 [==============================] - 36s 433ms/step - loss: 3.1498e-04 - accuracy: 1.0000 - val_loss: 6.9781e-04 - val_accuracy: 1.0000 - lr: 5.0000e-04 Epoch 18/20 83/83 [==============================] - 36s 434ms/step - loss: 1.6871e-04 - accuracy: 1.0000 - val_loss: 4.8953e-04 - val_accuracy: 1.0000 - lr: 5.0000e-04 Epoch 19/20 83/83 [==============================] - 36s 434ms/step - loss: 7.0924e-04 - accuracy: 1.0000 - val_loss: 2.1822e-04 - val_accuracy: 1.0000 - lr: 2.5000e-04 Epoch 20/20 83/83 [==============================] - 36s 433ms/step - loss: 3.8044e-04 - accuracy: 1.0000 - val_loss: 2.9509e-04 - val_accuracy: 1.0000 - lr: 2.5000e-04 预训练模型测试准确率: 0.9988 === 训练简单CNN模型 (PyTorch) === SimpleCNN( (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (fc1): Linear(in_features=50176, out_features=64, bias=True) (fc2): Linear(in_features=64, out_features=1, bias=True) (dropout): Dropout(p=0.5, inplace=False) (relu): ReLU() (sigmoid): Sigmoid() ) 使用设备: cpu Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% === 训练简单CNN模型 (PyTorch) === SimpleCNN( (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (fc1): Linear(in_features=50176, out_features=64, bias=True) (fc2): Linear(in_features=64, out_features=1, bias=True) (dropout): Dropout(p=0.5, inplace=False) (relu): ReLU() (sigmoid): Sigmoid() ) 使用设备: cpu Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% SimpleCNN( (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (fc1): Linear(in_features=50176, out_features=64, bias=True) (fc2): Linear(in_features=64, out_features=1, bias=True) (dropout): Dropout(p=0.5, inplace=False) (relu): ReLU() (sigmoid): Sigmoid() ) 使用设备: cpu Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% (conv3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (fc1): Linear(in_features=50176, out_features=64, bias=True) (fc2): Linear(in_features=64, out_features=1, bias=True) (dropout): Dropout(p=0.5, inplace=False) (relu): ReLU() (sigmoid): Sigmoid() ) 使用设备: cpu Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% (fc1): Linear(in_features=50176, out_features=64, bias=True) (fc2): Linear(in_features=64, out_features=1, bias=True) (dropout): Dropout(p=0.5, inplace=False) (relu): ReLU() (sigmoid): Sigmoid() ) 使用设备: cpu Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% (dropout): Dropout(p=0.5, inplace=False) (relu): ReLU() (sigmoid): Sigmoid() ) 使用设备: cpu Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% (sigmoid): Sigmoid() ) 使用设备: cpu Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% ) 使用设备: cpu Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% 使用设备: cpu Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% Epoch [10/30], Loss: 0.0095, Accuracy: 100.00% Epoch [20/30], Loss: 0.0469, Accuracy: 99.85% Epoch [30/30], Loss: 0.0416, Accuracy: 99.85% 简单CNN (PyTorch) 测试准确率: 99.88% === 训练ResNet风格模型 (PyTorch) === ResNetStyle( (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU() (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (layer1): ResidualBlock( (conv1): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU() (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (shortcut): Sequential( (0): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer2): ResidualBlock( (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU() (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (shortcut): Sequential( (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer3): ResidualBlock( (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU() (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (shortcut): Sequential( (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (global_avg_pool): AdaptiveAvgPool2d(output_size=(1, 1)) (fc): Linear(in_features=256, out_features=1, bias=True) (sigmoid): Sigmoid() ) 使用设备: cpu Epoch [10/30], Loss: 0.0007, Accuracy: 77.27% Epoch [20/30], Loss: 0.0001, Accuracy: 99.85% Epoch [30/30], Loss: 0.0000, Accuracy: 99.85% ResNet风格模型测试准确率: 100.00% === 训练注意力机制模型 (PyTorch) === AttentionCNN( (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (attention1): AttentionModule( (channel_attention): Sequential( (0): AdaptiveAvgPool2d(output_size=1) (1): Conv2d(32, 4, kernel_size=(1, 1), stride=(1, 1)) (2): ReLU() (3): Conv2d(4, 32, kernel_size=(1, 1), stride=(1, 1)) (4): Sigmoid() ) ) (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (attention2): AttentionModule( (channel_attention): Sequential( (0): AdaptiveAvgPool2d(output_size=1) (1): Conv2d(64, 8, kernel_size=(1, 1), stride=(1, 1)) (2): ReLU() (3): Conv2d(8, 64, kernel_size=(1, 1), stride=(1, 1)) (4): Sigmoid() ) ) (conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (attention3): AttentionModule( (channel_attention): Sequential( (0): AdaptiveAvgPool2d(output_size=1) (1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1)) (2): ReLU() (3): Conv2d(16, 128, kernel_size=(1, 1), stride=(1, 1)) (4): Sigmoid() ) ) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (global_avg_pool): AdaptiveAvgPool2d(output_size=(1, 1)) (fc): Linear(in_features=128, out_features=1, bias=True) (relu): ReLU() (sigmoid): Sigmoid() (dropout): Dropout(p=0.5, inplace=False) ) 使用设备: cpu Epoch [10/30], Loss: 0.0086, Accuracy: 96.21% Epoch [20/30], Loss: 0.0019, Accuracy: 96.36% Epoch [30/30], Loss: 0.0006, Accuracy: 99.85% 注意力机制模型测试准确率: 100.00% ================================================== 模型性能比较: ================================================== Simple_CNN_TF: 0.9988 Deep_CNN_TF: 1.0000 Pretrained_TF: 0.9988 Simple_CNN_PT: 0.9988 ResNet_PT: 1.0000 Attention_CNN_PT: 1.0000 F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 27169 (\N{CJK UNIFIED IDEOGRAPH-6A21}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 22411 (\N{CJK UNIFIED IDEOGRAPH-578B}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 27979 (\N{CJK UNIFIED IDEOGRAPH-6D4B}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 35797 (\N{CJK UNIFIED IDEOGRAPH-8BD5}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 20934 (\N{CJK UNIFIED IDEOGRAPH-51C6}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 30830 (\N{CJK UNIFIED IDEOGRAPH-786E}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 29575 (\N{CJK UNIFIED IDEOGRAPH-7387}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 28145 (\N{CJK UNIFIED IDEOGRAPH-6DF1}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 24230 (\N{CJK UNIFIED IDEOGRAPH-5EA6}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 23398 (\N{CJK UNIFIED IDEOGRAPH-5B66}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 20064 (\N{CJK UNIFIED IDEOGRAPH-4E60}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 24615 (\N{CJK UNIFIED IDEOGRAPH-6027}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 33021 (\N{CJK UNIFIED IDEOGRAPH-80FD}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 27604 (\N{CJK UNIFIED IDEOGRAPH-6BD4}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:615: UserWarning: Glyph 36739 (\N{CJK UNIFIED IDEOGRAPH-8F83}) missing from current font. plt.tight_layout() F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 28145 (\N{CJK UNIFIED IDEOGRAPH-6DF1}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 24230 (\N{CJK UNIFIED IDEOGRAPH-5EA6}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 23398 (\N{CJK UNIFIED IDEOGRAPH-5B66}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 20064 (\N{CJK UNIFIED IDEOGRAPH-4E60}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 27169 (\N{CJK UNIFIED IDEOGRAPH-6A21}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 22411 (\N{CJK UNIFIED IDEOGRAPH-578B}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 24615 (\N{CJK UNIFIED IDEOGRAPH-6027}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 33021 (\N{CJK UNIFIED IDEOGRAPH-80FD}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 27604 (\N{CJK UNIFIED IDEOGRAPH-6BD4}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 36739 (\N{CJK UNIFIED IDEOGRAPH-8F83}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 27604 (\N{CJK UNIFIED IDEOGRAPH-6BD4}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 36739 (\N{CJK UNIFIED IDEOGRAPH-8F83}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 27979 (\N{CJK UNIFIED IDEOGRAPH-6D4B}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 35797 (\N{CJK UNIFIED IDEOGRAPH-8BD5}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 36739 (\N{CJK UNIFIED IDEOGRAPH-8F83}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 27979 (\N{CJK UNIFIED IDEOGRAPH-6D4B}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 35797 (\N{CJK UNIFIED IDEOGRAPH-8BD5}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 20934 (\N{CJK UNIFIED IDEOGRAPH-51C6}) missing from current font. F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 36739 (\N{CJK UNIFIED IDEOGRAPH-8F83}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 27979 (\N{CJK UNIFIED IDEOGRAPH-6D4B}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 35797 (\N{CJK UNIFIED IDEOGRAPH-8BD5}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 20934 (\N{CJK UNIFIED IDEOGRAPH-51C6}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 30830 (\N{CJK UNIFIED IDEOGRAPH-786E}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 29575 (\N{CJK UNIFIED IDEOGRAPH-7387}) missing from current font. F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 27979 (\N{CJK UNIFIED IDEOGRAPH-6D4B}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 35797 (\N{CJK UNIFIED IDEOGRAPH-8BD5}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 20934 (\N{CJK UNIFIED IDEOGRAPH-51C6}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 30830 (\N{CJK UNIFIED IDEOGRAPH-786E}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 29575 (\N{CJK UNIFIED IDEOGRAPH-7387}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 20934 (\N{CJK UNIFIED IDEOGRAPH-51C6}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 30830 (\N{CJK UNIFIED IDEOGRAPH-786E}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 29575 (\N{CJK UNIFIED IDEOGRAPH-7387}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 30830 (\N{CJK UNIFIED IDEOGRAPH-786E}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\main.py:616: UserWarning: Glyph 29575 (\N{CJK UNIFIED IDEOGRAPH-7387}) missing from current font. plt.savefig('model_comparison.png', dpi=300, bbox_inches='tight') 性能比较图已保存为 'model_comparison.png' 最佳模型: Deep_CNN_TF, 准确率: 1.0000 详细结果已保存为 'model_results.csv' (base) PS F:\博士开题\YOLO\异常信号二次筛选\PS\ch1> ^C (base) PS F:\博士开题\YOLO\异常信号二次筛选\PS\ch1> f:; cd 'f:\博士开题\YOLO\异常信号二次筛选\PS\ch1'; & 'd:\anaconda1\python.exe' 'c:\Users\lejmj\.vscode\extensions\ms-python.debugpy-2025.15.2025101002-win32-x64\bundled\libs\debugpy\launcher' '62751' '--' 'F:\博士开题\YOLO\异常信号二次筛选\PS\ch1\D1_20251013.py' 使用设备: cpu 数据目录: F:\博士开题\YOLO\异常信号二次筛选\PS\ch1 找到 4121 张图片,其中正常信号: 157, 异常信号: 3964 训练集样本数: 3296 验证集样本数: 825 ================================================================================ 🎯 开始训练所有模型 ================================================================================ ================================================== 训练模型: CNN ================================================== 🚀 开始训练模型: CNN ✅ 保存最佳模型: saved_models\CNN_best.pth Epoch [1/20], Loss: 0.2865, Acc: 0.9624, F1: 0.9809, Time: 156.69s, LR: 1.00e-04, Patience: 0/5 Epoch [2/20], Loss: 0.1499, Acc: 0.9624, F1: 0.9809, Time: 153.04s, LR: 1.00e-04, Patience: 1/5 Epoch [3/20], Loss: 0.1147, Acc: 0.9624, F1: 0.9809, Time: 150.07s, LR: 1.00e-04, Patience: 2/5 Epoch [4/20], Loss: 0.0896, Acc: 0.9624, F1: 0.9809, Time: 149.15s, LR: 1.00e-04, Patience: 3/5 ✅ 保存最佳模型: saved_models\CNN_best.pth Epoch [5/20], Loss: 0.0745, Acc: 0.9903, F1: 0.9950, Time: 151.13s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\CNN_best.pth Epoch [6/20], Loss: 0.0590, Acc: 0.9976, F1: 0.9987, Time: 157.00s, LR: 1.00e-04, Patience: 0/5 Epoch [7/20], Loss: 0.0485, Acc: 0.9891, F1: 0.9943, Time: 152.86s, LR: 1.00e-04, Patience: 1/5 Epoch [8/20], Loss: 0.0400, Acc: 0.9927, F1: 0.9962, Time: 150.87s, LR: 1.00e-04, Patience: 2/5 Epoch [9/20], Loss: 0.0330, Acc: 0.9964, F1: 0.9981, Time: 149.34s, LR: 1.00e-04, Patience: 3/5 Epoch 00010: reducing learning rate of group 0 to 5.0000e-05. Epoch [10/20], Loss: 0.0317, Acc: 0.9964, F1: 0.9981, Time: 150.11s, LR: 5.00e-05, Patience: 4/5 Epoch [11/20], Loss: 0.0248, Acc: 0.9976, F1: 0.9987, Time: 150.36s, LR: 5.00e-05, Patience: 5/5 🛑 早停触发于第 11 轮 ✅ CNN 训练完成: Acc=0.9976, F1=0.9987 ================================================== 训练模型: VGG16 ================================================== Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to C:\Users\lejmj/.cache\torch\hub\checkpoints\vgg16-397923af.pth 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 528M/528M [00:06<00:00, 90.5MB/s] 🚀 开始训练模型: VGG16 ✅ 保存最佳模型: saved_models\VGG16_best.pth Epoch [1/20], Loss: 0.0139, Acc: 0.9976, F1: 0.9987, Time: 611.10s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\VGG16_best.pth Epoch [2/20], Loss: 0.0001, Acc: 0.9988, F1: 0.9994, Time: 597.28s, LR: 1.00e-04, Patience: 0/5 Epoch [3/20], Loss: 0.0000, Acc: 0.9988, F1: 0.9994, Time: 614.49s, LR: 1.00e-04, Patience: 1/5 Epoch [4/20], Loss: 0.0000, Acc: 0.9976, F1: 0.9987, Time: 614.28s, LR: 1.00e-04, Patience: 2/5 Epoch [5/20], Loss: 0.0223, Acc: 0.9624, F1: 0.9809, Time: 604.99s, LR: 1.00e-04, Patience: 3/5 Epoch 00006: reducing learning rate of group 0 to 5.0000e-05. Epoch [6/20], Loss: 0.0040, Acc: 0.9976, F1: 0.9987, Time: 660.98s, LR: 5.00e-05, Patience: 4/5 Epoch [7/20], Loss: 0.0032, Acc: 0.9976, F1: 0.9987, Time: 33953.69s, LR: 5.00e-05, Patience: 5/5 🛑 早停触发于第 7 轮 ✅ VGG16 训练完成: Acc=0.9988, F1=0.9994 ================================================== 训练模型: ResNet50 ================================================== 🚀 开始训练模型: ResNet50 ✅ 保存最佳模型: saved_models\ResNet50_best.pth Epoch [1/20], Loss: 0.1360, Acc: 0.9624, F1: 0.9809, Time: 287.18s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\ResNet50_best.pth Epoch [2/20], Loss: 0.0656, Acc: 0.9952, F1: 0.9975, Time: 290.83s, LR: 1.00e-04, Patience: 0/5 Epoch [3/20], Loss: 0.0364, Acc: 0.9952, F1: 0.9975, Time: 294.10s, LR: 1.00e-04, Patience: 1/5 Epoch [4/20], Loss: 0.0229, Acc: 0.9952, F1: 0.9975, Time: 261.31s, LR: 1.00e-04, Patience: 2/5 Epoch [5/20], Loss: 0.0173, Acc: 0.9952, F1: 0.9975, Time: 270.63s, LR: 1.00e-04, Patience: 3/5 ✅ 保存最佳模型: saved_models\ResNet50_best.pth Epoch [6/20], Loss: 0.0135, Acc: 0.9964, F1: 0.9981, Time: 278.61s, LR: 1.00e-04, Patience: 0/5 Epoch [7/20], Loss: 0.0117, Acc: 0.9964, F1: 0.9981, Time: 265.74s, LR: 1.00e-04, Patience: 1/5 Epoch [8/20], Loss: 0.0091, Acc: 0.9964, F1: 0.9981, Time: 261.22s, LR: 1.00e-04, Patience: 2/5 Epoch [9/20], Loss: 0.0075, Acc: 0.9964, F1: 0.9981, Time: 260.32s, LR: 1.00e-04, Patience: 3/5 Epoch 00010: reducing learning rate of group 0 to 5.0000e-05. Epoch [10/20], Loss: 0.0068, Acc: 0.9964, F1: 0.9981, Time: 255.99s, LR: 5.00e-05, Patience: 4/5 Epoch [11/20], Loss: 0.0060, Acc: 0.9964, F1: 0.9981, Time: 257.30s, LR: 5.00e-05, Patience: 5/5 🛑 早停触发于第 11 轮 ✅ ResNet50 训练完成: Acc=0.9964, F1=0.9981 ================================================== 训练模型: MobileNetV2 ================================================== 🚀 开始训练模型: MobileNetV2 ✅ 保存最佳模型: saved_models\MobileNetV2_best.pth Epoch [1/20], Loss: 0.1558, Acc: 0.9624, F1: 0.9809, Time: 118.94s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\MobileNetV2_best.pth Epoch [2/20], Loss: 0.0592, Acc: 0.9964, F1: 0.9981, Time: 119.53s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\MobileNetV2_best.pth Epoch [3/20], Loss: 0.0294, Acc: 0.9976, F1: 0.9987, Time: 118.99s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\MobileNetV2_best.pth Epoch [4/20], Loss: 0.0193, Acc: 0.9988, F1: 0.9994, Time: 119.40s, LR: 1.00e-04, Patience: 0/5 Epoch [5/20], Loss: 0.0150, Acc: 0.9988, F1: 0.9994, Time: 119.69s, LR: 1.00e-04, Patience: 1/5 Epoch [6/20], Loss: 0.0108, Acc: 0.9976, F1: 0.9987, Time: 118.99s, LR: 1.00e-04, Patience: 2/5 Epoch [7/20], Loss: 0.0092, Acc: 0.9988, F1: 0.9994, Time: 120.89s, LR: 1.00e-04, Patience: 3/5 Epoch 00008: reducing learning rate of group 0 to 5.0000e-05. Epoch [8/20], Loss: 0.0067, Acc: 0.9988, F1: 0.9994, Time: 122.08s, LR: 5.00e-05, Patience: 4/5 Epoch [9/20], Loss: 0.0067, Acc: 0.9976, F1: 0.9987, Time: 131.98s, LR: 5.00e-05, Patience: 5/5 🛑 早停触发于第 9 轮 ✅ MobileNetV2 训练完成: Acc=0.9988, F1=0.9994 ================================================== 训练模型: DenseNet121 ================================================== 🚀 开始训练模型: DenseNet121 ✅ 保存最佳模型: saved_models\DenseNet121_best.pth Epoch [1/20], Loss: 0.1522, Acc: 0.9624, F1: 0.9809, Time: 280.87s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\DenseNet121_best.pth Epoch [2/20], Loss: 0.0761, Acc: 0.9903, F1: 0.9950, Time: 291.73s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\DenseNet121_best.pth Epoch [3/20], Loss: 0.0426, Acc: 0.9939, F1: 0.9969, Time: 283.10s, LR: 1.00e-04, Patience: 0/5 Epoch [4/20], Loss: 0.0279, Acc: 0.9939, F1: 0.9969, Time: 283.65s, LR: 1.00e-04, Patience: 1/5 ✅ 保存最佳模型: saved_models\DenseNet121_best.pth Epoch [5/20], Loss: 0.0191, Acc: 0.9952, F1: 0.9975, Time: 283.20s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\DenseNet121_best.pth Epoch [6/20], Loss: 0.0153, Acc: 0.9964, F1: 0.9981, Time: 282.58s, LR: 1.00e-04, Patience: 0/5 Epoch [7/20], Loss: 0.0128, Acc: 0.9964, F1: 0.9981, Time: 288.11s, LR: 1.00e-04, Patience: 1/5 Epoch [8/20], Loss: 0.0105, Acc: 0.9964, F1: 0.9981, Time: 302.87s, LR: 1.00e-04, Patience: 2/5 ✅ 保存最佳模型: saved_models\DenseNet121_best.pth Epoch [9/20], Loss: 0.0080, Acc: 0.9988, F1: 0.9994, Time: 300.54s, LR: 1.00e-04, Patience: 0/5 Epoch [10/20], Loss: 0.0071, Acc: 0.9964, F1: 0.9981, Time: 299.75s, LR: 1.00e-04, Patience: 1/5 Epoch [11/20], Loss: 0.0058, Acc: 0.9976, F1: 0.9987, Time: 299.77s, LR: 1.00e-04, Patience: 2/5 Epoch [12/20], Loss: 0.0058, Acc: 0.9988, F1: 0.9994, Time: 300.69s, LR: 1.00e-04, Patience: 3/5 Epoch 00013: reducing learning rate of group 0 to 5.0000e-05. Epoch [13/20], Loss: 0.0041, Acc: 0.9976, F1: 0.9987, Time: 300.08s, LR: 5.00e-05, Patience: 4/5 Epoch [14/20], Loss: 0.0045, Acc: 0.9988, F1: 0.9994, Time: 300.08s, LR: 5.00e-05, Patience: 5/5 🛑 早停触发于第 14 轮 ✅ DenseNet121 训练完成: Acc=0.9988, F1=0.9994 ================================================== 训练模型: EfficientNetB0 ================================================== Downloading: "https://download.pytorch.org/models/efficientnet_b0_rwightman-3dd342df.pth" to C:\Users\lejmj/.cache\torch\hub\checkpoints\efficientnet_b0_rwightman-3dd342df.pth 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20.5M/20.5M [00:00<00:00, 27.3MB/s] 🚀 开始训练模型: EfficientNetB0 ✅ 保存最佳模型: saved_models\EfficientNetB0_best.pth Epoch [1/20], Loss: 0.2317, Acc: 0.9636, F1: 0.9815, Time: 165.82s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\EfficientNetB0_best.pth Epoch [2/20], Loss: 0.1030, Acc: 0.9806, F1: 0.9900, Time: 164.88s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\EfficientNetB0_best.pth Epoch [3/20], Loss: 0.0761, Acc: 0.9952, F1: 0.9975, Time: 165.01s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\EfficientNetB0_best.pth Epoch [4/20], Loss: 0.0552, Acc: 0.9976, F1: 0.9987, Time: 164.58s, LR: 1.00e-04, Patience: 0/5 ✅ 保存最佳模型: saved_models\EfficientNetB0_best.pth Epoch [5/20], Loss: 0.0458, Acc: 1.0000, F1: 1.0000, Time: 163.72s, LR: 1.00e-04, Patience: 0/5 Epoch [6/20], Loss: 0.0423, Acc: 1.0000, F1: 1.0000, Time: 164.06s, LR: 1.00e-04, Patience: 1/5 Epoch [7/20], Loss: 0.0301, Acc: 1.0000, F1: 1.0000, Time: 164.36s, LR: 1.00e-04, Patience: 2/5 Epoch [8/20], Loss: 0.0342, Acc: 0.9988, F1: 0.9994, Time: 163.27s, LR: 1.00e-04, Patience: 3/5 Epoch 00009: reducing learning rate of group 0 to 5.0000e-05. Epoch [9/20], Loss: 0.0274, Acc: 1.0000, F1: 1.0000, Time: 164.34s, LR: 5.00e-05, Patience: 4/5 Epoch [10/20], Loss: 0.0251, Acc: 1.0000, F1: 1.0000, Time: 164.54s, LR: 5.00e-05, Patience: 5/5 🛑 早停触发于第 10 轮 ✅ EfficientNetB0 训练完成: Acc=1.0000, F1=1.0000 ================================================================================ ✅ 所有模型训练完成,性能对比结果如下: ================================================================================ 模型 准确率 精确率 召回率 F1得分 平均耗时(s) 训练轮数 -------------------------------------------------------------------------------- CNN 0.9976 0.9987 0.9987 0.9987 151.87 11 VGG16 0.9988 0.9987 0.9987 0.9994 5379.55 7 ResNet50 0.9964 0.9962 1.0000 0.9981 271.20 11 MobileNetV2 0.9988 0.9987 0.9987 0.9994 121.17 9 DenseNet121 0.9988 0.9987 1.0000 0.9994 292.64 14 EfficientNetB0 1.0000 1.0000 1.0000 1.0000 164.46 10 -------------------------------------------------------------------------------- 🏆 最佳模型: EfficientNetB0 (F1-Score: 1.0000, Accuracy: 1.0000) 💾 结果已保存: - Excel文件: training_results\model_training_results.xlsx - 模型文件: saved_models/ - 图表文件: training_results/ - 最佳模型: EfficientNetB0_best.pth ⏱️ 总训练时间: 871.78 分钟 将两次实验(6组)的结果,绘制成nature级别的图像,对比分析,第一次是未改进的,第二次是改进的,应该表现在图里的尽量表现,并将其他数据罗列成几个对比个表格,编写完整
10-15
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值