golang 一行一行读文件

本文介绍了使用Go语言实现的两种不同方法来读取文件并统计每一行出现的次数。第一种方法使用bufio包逐行扫描文件,第二种方法通过ioutil将整个文件读入内存再进行分割统计。适用于需要处理文本文件行重复情况的场景。
package main

import (
        "bufio"
        "fmt"
        "os"
)
func main() {
        counts := make(map[string]int)
        files := os.Args[1:]
        if len(files) == 0 {
                countLines(os.Stdin, counts)
        } else {
                for _, arg := range files {
                        f, err := os.Open(arg)
                        if err != nil {
                                fmt.Fprintf(os.Stderr, "dup2: %v\n", err)
                                continue
                        }
                        countLines(f, counts)
                        f.Close()
                }
        }
        for line, n := range counts {
                fmt.Printf("%d\t%s\n", n, line)
        }
}

func countLines(f *os.File, counts map[string]int) {
        input := bufio.NewScanner(f)
        for input.Scan() {
                counts[input.Text()]++
        }
        // NOTE: ignoring potential errors from input.Err()
}


go run main.go a.txt


另一种方法:

package main

import (
	"fmt"
	"io/ioutil"
	"os"
	"strings"
)

func main() {
	counts := make(map[string]int)
	for _, filename := range os.Args[1:] {
		data, err := ioutil.ReadFile(filename)
		if err != nil {
			fmt.Fprintf(os.Stderr, "dup3: %v\n", err)
			continue
		}
		for _, line := range strings.Split(string(data), "\n") {
			counts[line]++
		}
	}
	for line, n := range counts {
		if n > 1 {
			fmt.Printf("%d\t%s\n", n, line)
		}
	}
}




内容概要:本文是一篇关于使用RandLANet模型对SensatUrban数据集进行点云语义分割的实战教程,系统介绍了从环境搭建、数据准备、模型训练与测试到精度评估的完整流程。文章详细说明了在Ubuntu系统下配置TensorFlow 2.2、CUDA及cuDNN等深度学习环境的方法,并指导用户下载和预处理SensatUrban数据集。随后,逐步讲解RandLANet代码的获取与运行方式,包括训练、测试命令的执行与参数含义,以及如何监控训练过程中的关键指标。最后,教程涵盖测试结果分析、向官方平台提交结果、解读评估报告及可视化效果等内容,并针对常见问题提供解决方案。; 适合人群:具备一定深度学习基础,熟悉Python编程和深度学习框架,从事计算机视觉或三维点云相关研究的学生、研究人员及工程师;适合希望动手实践点云语义分割项目的初学者与进阶者。; 使用场景及目标:①掌握RandLANet网络结构及其在点云语义分割任务中的应用;②学会完整部署一个点云分割项目,包括数据处理、模型训练、测试与性能评估;③为参与相关竞赛或科研项目提供技术支撑。; 阅读建议:建议读者结合提供的代码链接和密码访问完整资料,在本地或云端环境中边操作边学习,重点关注数据格式要求与训练参数设置,遇到问题时参考“常见问题与解决技巧”部分及时排查。
内容概要:本文详细介绍了三相异步电机SVPWM-DTC(空间矢量脉宽调制-直接转矩控制)的Simulink仿真实现方法,结合DTC响应快与SVPWM谐波小的优点,构建高性能电机控制系统。文章系统阐述了控制原理,包括定子磁链观测、转矩与磁链误差滞环比较、扇区判断及电压矢量选择,并通过SVPWM技术生成固定频率PWM信号,提升系统稳态性能。同时提供了完整的Simulink建模流程,涵盖电机本体、磁链观测器、误差比较、矢量选择、SVPWM调制、逆变器驱动等模块的搭建与参数设置,给出了仿真调试要点与预期结果,如电流正弦性、转矩响应快、磁链轨迹趋圆等,并提出了模型优化与扩展方向,如改进观测器、自适应滞环、弱磁控制和转速闭环等。; 适合人群:电气工程、自动化及相关专业本科生、研究生,从事电机控制算法开发的工程师,具备一定MATLAB/Simulink和电机控制理论基础的技术人员。; 使用场景及目标:①掌握SVPWM-DTC控制策略的核心原理与实现方式;②在Simulink中独立完成三相异步电机高性能控制系统的建模与仿真;③通过仿真验证控制算法有效性,为实际工程应用提供设计依据。; 阅读建议:学习过程中应结合文中提供的电机参数和模块配置逐步搭建模型,重点关注磁链观测、矢量选择表和SVPWM调制的实现细节,仿真时注意滞环宽度与开关频率的调试,建议配合MATLAB官方工具箱文档进行参数校准与结果分析。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值