python训练营打卡第40天

训练和测试的规范写法

知识点回顾:

  1. 彩色和灰度图片测试和训练的规范写法:封装在函数中
  2. 展平操作:除第一个维度batchsize外全部展平
  3. dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
 
# 设备配置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
 
# 数据预处理函数 - 处理灰度图像(MNIST)
def get_mnist_loaders(batch_size=64):
    # 灰度图像归一化
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
    ])
    
    train_dataset = datasets.MNIST(
        root='./data', 
        train=True, 
        download=True, 
        transform=transform
    )
    test_dataset = datasets.MNIST(
        root='./data', 
        train=False, 
        download=True, 
        transform=transform
    )
    
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    
    return train_loader, test_loader
 
# 数据预处理函数 - 处理彩色图像(CIFAR-10)
def get_cifar10_loaders(batch_size=64):
    # 彩色图像归一化
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # CIFAR-10的均值和标准差
    ])
    
    train_dataset = datasets.CIFAR10(
        root='./data', 
        train=True, 
        download=True, 
        transform=transform
    )
    test_dataset = datasets.CIFAR10(
        root='./data', 
        train=False, 
        download=True, 
        transform=transform
    )
    
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    
    return train_loader, test_loader
 
# 定义包含展平和dropout的CNN模型
class SimpleCNN(nn.Module):
    def __init__(self, in_channels=1, num_classes=10):
        super(SimpleCNN, self).__init__()
        # 卷积层部分
        self.conv_layers = nn.Sequential(
            nn.Conv2d(in_channels, 32, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
            nn.Dropout(0.25),  # 第一个dropout层
            
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
            nn.Dropout(0.25)   # 第二个dropout层
        )
        
        # 展平操作后接全连接层
        self.fc_layers = nn.Sequential(
            nn.Flatten(),  # 展平操作,保持batch维度不变
            nn.Linear(64 * 7 * 7, 128),  # 假设输入尺寸为32x32,经过两次池化后为8x8,64通道
            nn.ReLU(),
            nn.Dropout(0.5),  # 全连接层后的dropout
            nn.Linear(128, num_classes)
        )
    
    def forward(self, x):
        x = self.conv_layers(x)
        x = self.fc_layers(x)
        return x
 
# 训练函数 - 规范的训练流程
def train(model, train_loader, criterion, optimizer, epoch, device):
    model.train()  # 切换到训练模式,启用dropout
    running_loss = 0.0
    correct = 0
    total = 0
    
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        
        # 梯度清零
        optimizer.zero_grad()
        
        # 前向传播
        output = model(data)
        loss = criterion(output, target)
        
        # 反向传播和优化
        loss.backward()
        optimizer.step()
        
        # 统计训练信息
        running_loss += loss.item()
        _, predicted = output.max(1)
        total += target.size(0)
        correct += predicted.eq(target).sum().item()
        
        if batch_idx % 100 == 0:
            print(f'Epoch: {epoch} | Batch: {batch_idx} | Loss: {loss.item():.4f} | Acc: {100.*correct/total:.2f}%')
    
    epoch_loss = running_loss / len(train_loader)
    epoch_acc = 100. * correct / total
    return epoch_loss, epoch_acc
 
# 测试函数 - 规范的测试流程
def test(model, test_loader, criterion, device):
    model.eval()  # 切换到测试模式,关闭dropout
    test_loss = 0
    correct = 0
    total = 0
    
    with torch.no_grad():  # 不计算梯度,节省内存和计算资源
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            
            # 累加损失
            test_loss += criterion(output, target).item()
            
            # 计算准确率
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
    
    test_loss /= len(test_loader)
    test_acc = 100. * correct / total
    print(f'Test Loss: {test_loss:.4f} | Test Accuracy: {test_acc:.2f}%')
    return test_loss, test_acc
 
# 主函数 - 整合整个流程
def main(use_color=False):
    # 选择数据集
    if use_color:
        print("Using CIFAR-10 (color images) dataset...")
        train_loader, test_loader = get_cifar10_loaders(batch_size=128)
        in_channels = 3  # 彩色图像3通道
    else:
        print("Using MNIST (grayscale images) dataset...")
        train_loader, test_loader = get_mnist_loaders(batch_size=128)
        in_channels = 1  # 灰度图像1通道
    
    # 初始化模型
    model = SimpleCNN(in_channels=in_channels, num_classes=10).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    
    # 训练和测试循环
    num_epochs = 5
    train_losses, train_accs, test_losses, test_accs = [], [], [], []
    
    for epoch in range(1, num_epochs + 1):
        print(f"\nEpoch {epoch}/{num_epochs}")
        train_loss, train_acc = train(model, train_loader, criterion, optimizer, epoch, device)
        test_loss, test_acc = test(model, test_loader, criterion, device)
        
        train_losses.append(train_loss)
        train_accs.append(train_acc)
        test_losses.append(test_loss)
        test_accs.append(test_acc)
    

输出结果:

Using device: cpu
Using MNIST (grayscale images) dataset...

Epoch 1/5
Epoch: 1 | Batch: 0 | Loss: 2.3310 | Acc: 7.81%
Epoch: 1 | Batch: 100 | Loss: 0.3962 | Acc: 75.91%
Epoch: 1 | Batch: 200 | Loss: 0.1773 | Acc: 84.18%
Epoch: 1 | Batch: 300 | Loss: 0.1052 | Acc: 87.58%
Epoch: 1 | Batch: 400 | Loss: 0.0723 | Acc: 89.52%
Test Loss: 0.0672 | Test Accuracy: 97.87%

Epoch 2/5
Epoch: 2 | Batch: 0 | Loss: 0.1675 | Acc: 94.53%
Epoch: 2 | Batch: 100 | Loss: 0.1031 | Acc: 96.50%
Epoch: 2 | Batch: 200 | Loss: 0.0900 | Acc: 96.50%
Epoch: 2 | Batch: 300 | Loss: 0.0752 | Acc: 96.66%
Epoch: 2 | Batch: 400 | Loss: 0.0974 | Acc: 96.68%
Test Loss: 0.0390 | Test Accuracy: 98.63%

Epoch 3/5
Epoch: 3 | Batch: 0 | Loss: 0.0644 | Acc: 98.44%
Epoch: 3 | Batch: 100 | Loss: 0.0499 | Acc: 97.41%
Epoch: 3 | Batch: 200 | Loss: 0.0949 | Acc: 97.47%
Epoch: 3 | Batch: 300 | Loss: 0.1349 | Acc: 97.53%
Epoch: 3 | Batch: 400 | Loss: 0.1658 | Acc: 97.47%
Test Loss: 0.0361 | Test Accuracy: 98.71%

Epoch 4/5
Epoch: 4 | Batch: 0 | Loss: 0.1060 | Acc: 95.31%
Epoch: 4 | Batch: 100 | Loss: 0.0539 | Acc: 97.87%
Epoch: 4 | Batch: 200 | Loss: 0.0220 | Acc: 97.69%
Epoch: 4 | Batch: 300 | Loss: 0.0484 | Acc: 97.71%
Test Loss: 0.0336 | Test Accuracy: 98.80%
Epoch 5/5
Epoch: 5 | Batch: 0 | Loss: 0.0804 | Acc: 96.88%
Epoch: 5 | Batch: 100 | Loss: 0.0255 | Acc: 98.04%
Epoch: 5 | Batch: 200 | Loss: 0.0396 | Acc: 97.97%
Epoch: 5 | Batch: 300 | Loss: 0.0869 | Acc: 97.97%
Epoch: 5 | Batch: 400 | Loss: 0.0246 | Acc: 97.98%
Test Loss: 0.0275 | Test Accuracy: 99.00%

@浙大疏锦行

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值