Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 138 Accepted Submission(s): 43
as x[i1], x[i2],...,x[ik], which satisfies follow conditions:
1) x[i1] < x[i2],...,<x[ik];
2) 1<=i1 < i2,...,<ik<=n
As an excellent program designer, you must know how to find the maximum length of the
increasing sequense, which is defined as s. Now, the next question is how many increasing
subsequence with s-length can you find out from the sequence X.
For example, in one case, if s = 3, and you can find out 2 such subsequence A and B from X.
1) A = a1, a2, a3. B = b1, b2, b3.
2) Each ai or bj(i,j = 1,2,3) can only be chose once at most.
Now, the question is:
1) Find the maximum length of increasing subsequence of X(i.e. s).
2) Find the number of increasing subsequence with s-length under conditions described (i.e. num).
have n numbers.
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#define N 1005
#define M 100005
#define inf 999999999
using namespace std;
int n,m,s,t,num,adj[N],dis[N],q[N],a[N],d[N];
struct edge
{
int v,w,pre;
}e[M];
void insert(int u,int v,int w)
{
e[num]=(edge){v,w,adj[u]};
adj[u]=num++;
e[num]=(edge){u,0,adj[v]};
adj[v]=num++;
}
int bfs()
{
int i,x,v,head=0,tail=0;
memset(dis,0,sizeof(dis));
dis[s]=1;
q[++tail]=s;
while(head!=tail)
{
x=q[head=(head+1)%N];
for(i=adj[x];~i;i=e[i].pre)
if(e[i].w&&!dis[v=e[i].v])
{
dis[v]=dis[x]+1;
if(v==t)
return 1;
q[tail=(tail+1)%N]=v;
}
}
return 0;
}
int dfs(int x,int limit)
{
if(x==t)
return limit;
int i,v,tmp,cost=0;
for(i=adj[x];~i&&cost<limit;i=e[i].pre)
if(e[i].w&&dis[x]==dis[v=e[i].v]-1)
{
tmp=dfs(v,min(limit-cost,e[i].w));
if(tmp)
{
e[i].w-=tmp;
e[i^1].w+=tmp;
cost+=tmp;
}
else
dis[v]=-1;
}
return cost;
}
int Dinic()
{
int ans=0;
while(bfs())
ans+=dfs(s,inf);
return ans;
}
int main()
{
while(~scanf("%d",&n))
{
int i,j,ans=0;
memset(d,0,sizeof(d));
memset(adj,-1,sizeof(adj));
num=0;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
for(i=1;i<=n;i++)
for(j=0;j<i;j++)
if(a[i]>a[j])
{
d[i]=max(d[i],d[j]+1);
ans=max(ans,d[i]);
}
s=0;
t=n+1;
for(i=1;i<=n;i++)
{
if(d[i]==1)
insert(s,i,1);
if(d[i]==ans)
insert(i,t,1);
for(j=i+1;j<=n;j++)
if(d[j]==d[i]+1&&a[i]<a[j])
insert(i,j,1);
}
printf("%d\n%d\n",ans,Dinic());
}
}
本文探讨了如何通过最大流算法解决序列问题中求解最长递增子序列及其数量的问题。详细介绍了建图方法和算法实现,包括LIS不重复计数及最大流的应用。
1804

被折叠的 条评论
为什么被折叠?



