HDU2845Beans题解动态规划DP

本文介绍了一个名为Beans的游戏,玩家在一个M*N的矩阵中收集不同品质的豆子,但需遵循特定规则。文章提供了输入输出样例及算法实现思路,包括状态定义与转移方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Beans

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 616    Accepted Submission(s): 315


Problem Description
Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.


Now, how much qualities can you eat and then get ?
 

Input
There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M*N<=200000.
 

Output
For each case, you just output the MAX qualities you can eat and then get.
 

Sample Input
      
4 6 11 0 7 5 13 9 78 4 81 6 22 4 1 40 9 34 16 10 11 22 0 33 39 6
 

Sample Output
      
242
 

Source
 

Recommend
gaojie

 

 

 

 横竖分别求一下不连续的最大子段和;

状态:

 d[i]前i列不连续的最大子段和

s[i]前i行不连续的最大子段和

 

状态转移方程:

d[j]=max(d[k])+a[i][j]  0<=k<j-1

d[j]+=x;x=max{d[j-1]}

ans=max{s[i]}

 

代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值