HDU-1711-Number Sequence

Number Sequence

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 29338    Accepted Submission(s): 12332



Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
 

Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
 

Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
 

Sample Input
  
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
 

Sample Output
  
6 -1
 

Source

这道题是KMP的模板题,也没什么可所说的;

AC代码:
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
const  int maxn=1e6+10;
int a[maxn],b[maxn];
int p[1000000];
int Kmp(int* a,int n,int* b,int m)
{
	int i=0,j=0;
	while(i<n){
		if(j==-1||a[i]==b[j]){
			++i;
			++j;
			if(j==m){
				return i-m+1;
			}
		}else{
			j=p[j];
		}
	}
	return -1;
}
void getnext(int *b,int m)//求next数组; 
{
	int i=0,j=0;
	p[0]=-1;
	j=p[i];
	while(i<m){
		if(j==-1||b[i]==b[j]){
			p[++i]=++j;
		}else{
			j=p[j];
		}
	}
}
int main()
{
	int T,n,m;
	scanf("%d",&T);
	while(T--){
		scanf("%d %d",&n,&m);
		for(int i=0;i<n;i++){
			scanf("%d",&a[i]);
		}
		for(int j=0;j<m;j++){
			scanf("%d",&b[j]);
		}
		getnext(b,m);
		printf("%d\n",Kmp(a,n,b,m));
	}
return 0;
}


 
源码来自:https://pan.quark.cn/s/a3a3fbe70177 AppBrowser(Application属性查看器,不需要越狱! ! ! ) 不需要越狱,调用私有方法 --- 获取完整的已安装应用列表、打开和删除应用操作、应用运行时相关信息的查看。 支持iOS10.X 注意 目前AppBrowser不支持iOS11应用查看, 由于iOS11目前还处在Beta版, 系统API还没有稳定下来。 等到Private Header更新了iOS11版本,我也会进行更新。 功能 [x] 已安装的应用列表 [x] 应用的详情界面 (打开应用,删除应用,应用的相关信息展示) [x] 应用运行时信息展示(LSApplicationProxy) [ ] 定制喜欢的字段,展示在应用详情界面 介绍 所有已安装应用列表(应用icon+应用名) 为了提供思路,这里只用伪代码,具体的私有代码调用请查看: 获取应用实例: 获取应用名和应用的icon: 应用列表界面展示: 应用列表 应用运行时详情 打开应用: 卸载应用: 获取info.plist文件: 应用运行时详情界面展示: 应用运行时详情 右上角,从左往右第一个按钮用来打开应用;第二个按钮用来卸载这个应用 INFO按钮用来解析并显示出对应的LSApplicationProxy类 树形展示LSApplicationProxy类 通过算法,将LSApplicationProxy类,转换成了字典。 转换规则是:属性名为key,属性值为value,如果value是一个可解析的类(除了NSString,NSNumber...等等)或者是个数组或字典,则继续递归解析。 并且会找到superClass的属性并解析,superClass如...
基于遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO)的LSTM分类预测研究(Matlab代码实现)内容概要:本文研究了一种基于遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO),并将其应用于LSTM神经网络的分类预测中,通过Matlab代码实现。该方法结合遗传算法的全局搜索能力与改进的多群粒子群算法的局部优化特性,提升LSTM模型在分类任务中的性能表现,尤其适用于复杂非线性系统的预测问题。文中详细阐述了算法的设计思路、优化机制及在LSTM参数优化中的具体应用,并提供了可复现的Matlab代码,属于SCI级别研究成果的复现与拓展。; 适合人群:具备一定机器学习和优化算法基础,熟悉Matlab编程,从事智能算法、时间序列预测或分类模型研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①提升LSTM在分类任务中的准确性与收敛速度;②研究混合智能优化算法(如GA与PSO结合)在神经网络超参数优化中的应用;③实现高精度分类预测模型,适用于电力系统故障诊断、电池健康状态识别等领域; 阅读建议:建议读者结合Matlab代码逐步调试运行,理解GA-HIDMSPSO算法的实现细节,重点关注种群划分、异构策略设计及与LSTM的集成方式,同时可扩展至其他深度学习模型的参数优化任务中进行对比实验。
HDU-3480 是一个典型的动态规划问题,其题目标题通常为 *Division*,主要涉及二维费用背包问题或优化后的动态规划策略。题目大意是:给定一个整数数组,将其划分为若干个连续的子集,每个子集最多包含 $ m $ 个元素,并且每个子集的最大值与最小值之差不能超过给定的阈值 $ t $,目标是使所有子集的划分代价总和最小。每个子集的代价是该子集最大值与最小值的差值。 ### 动态规划思路 设 $ dp[i] $ 表示前 $ i $ 个元素的最小代价。状态转移方程如下: $$ dp[i] = \min_{j=0}^{i-1} \left( dp[j] + cost(j+1, i) \right) $$ 其中 $ cost(j+1, i) $ 表示从第 $ j+1 $ 到第 $ i $ 个元素构成一个子集的代价,即 $ \max(a[j+1..i]) - \min(a[j+1..i]) $。 为了高效计算 $ cost(j+1, i) $,可以使用滑动窗口或单调队列等数据结构来维护区间最大值与最小值,从而将时间复杂度优化到可接受的范围。 ### 示例代码 以下是一个简化版本的动态规划实现,使用暴力方式计算区间代价,适用于理解问题结构: ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN = 10010; int a[MAXN]; int dp[MAXN]; int main() { int T, n, m; cin >> T; for (int Case = 1; Case <= T; ++Case) { cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i]; dp[0] = 0; for (int i = 1; i <= n; ++i) { dp[i] = INF; int mn = a[i], mx = a[i]; for (int j = i; j >= max(1, i - m + 1); --j) { mn = min(mn, a[j]); mx = max(mx, a[j]); if (mx - mn <= T) { dp[i] = min(dp[i], dp[j - 1] + mx - mn); } } } cout << "Case " << Case << ": " << dp[n] << endl; } return 0; } ``` ### 优化策略 - **单调队列**:可以使用两个单调队列分别维护当前窗口的最大值与最小值,从而将区间代价计算的时间复杂度从 $ O(n^2) $ 降低到 $ O(n) $。 - **斜率优化**:若问题满足特定的决策单调性,可以考虑使用斜率优化技巧进一步加速状态转移过程。 ### 时间复杂度分析 原始暴力解法的时间复杂度为 $ O(n^2) $,在 $ n \leq 10^4 $ 的情况下可能勉强通过。通过单调队列优化后,可以稳定运行于 $ O(n) $ 或 $ O(n \log n) $。 ### 应用场景 HDU-3480 的问题模型可以应用于资源调度、任务划分等场景,尤其适用于需要控制子集内部差异的问题,如图像分块压缩、数据分段处理等[^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值