CodeForces - 610A. Pasha and Stick

本文探讨了Pasha如何将棍子切割成四部分来构成矩形而非正方形的问题。给出了具体的解决思路及C++实现代码,并通过样例解释了不同情况下的切割方式。
A. Pasha and Stick
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output

Pasha has a wooden stick of some positive integer length n. He wants to perform exactly three cuts to get four parts of the stick. Each part must have some positive integer length and the sum of these lengths will obviously be n.

Pasha likes rectangles but hates squares, so he wonders, how many ways are there to split a stick into four parts so that it's possible to form a rectangle using these parts, but is impossible to form a square.

Your task is to help Pasha and count the number of such ways. Two ways to cut the stick are considered distinct if there exists some integer x, such that the number of parts of length x in the first way differ from the number of parts of length x in the second way.

Input
The first line of the input contains a positive integer n (1 ≤ n ≤ 2·109) — the length of Pasha's stick.

Output
The output should contain a single integer — the number of ways to split Pasha's stick into four parts of positive integer length so that it's possible to make a rectangle by connecting the ends of these parts, but is impossible to form a square.

Examples
input:
6
output:
1
input:
20
output:
4
Note
There is only one way to divide the stick in the first sample {1, 1, 2, 2}.

Four ways to divide the stick in the second sample are {1, 1, 9, 9}, {2, 2, 8, 8}, {3, 3, 7, 7} and {4, 4, 6, 6}. Note that {5, 5, 5, 5} doesn't work.
这道题我的思路是在这个数小于等于5时是无论怎样都不能满足条件的,而当大于5时又会发现如果这个数不能整除2,那么也不会满足条件。
#include<cstdio>
#include<algorithm>
using namespace std;
int main()
{
	long long int n;
	while(scanf("%lld",&n)!=EOF){
		if(n<=5){
			printf("0\n");//判定这个数与5的大小 
		}else{
			if(n%2==0){//判断这个数能否整除2 
				if(n%4==0){//判断这个数与4的关系,因为是分成4份。 
					printf("%d\n",n/4-1);
				}else{
					printf("%d\n",n/4);
				}
			}else{
				printf("0\n");
			}
		}
	}
return 0;
}



基于部落竞争与成员合作算法(CTCM)融合动态窗口法DWA的无人机三维动态避障方法研究,MATLAB代码 动态避障路径规划:基于部落竞争与成员合作算法(CTCM)融合动态窗口法DWA的无人机三维动态避障方法研究,MATLAB 融合DWA的青蒿素优化算法(AOA)求解无人机三维动态避障路径规划,MATLAB代码 基于动态环境下多智能体自主避障路径优化的DWA算法研究,MATLAB代码 融合DWA的青蒿素优化算法AOA求解无人机三维动态避障路径规划,MATLAB代码 基于DWA的多智能体动态避障路径规划算法研究,MATLAB代码 融合动态窗口法DWA的粒子群算法PSO求解无人机三维动态避障路径规划研究,MATLAB代码 基于粒子群算法PSO融合动态窗口法DWA的无人机三维动态避障路径规划研究,MATLAB代码 基于ACOSRAR-DWA无人机三维动态避障路径规划,MATLAB代码 基于ACOSRAR-DWA无人机三维动态避障路径规划,MATLAB代码 基于DWA的动态环境下无人机自主避障路径优化,MATLAB代码 基于DWA的动态环境下机器人自主避障路径规划,MATLAB代码 基于城市场景下RRT、ACO、A*算法的无人机三维路径规划方法研究,MATLAB代码 基于城市场景下无人机三维路径规划的导航变量的多目标粒子群优化算法(NMOPSO),MATLAB代码 导航变量的多目标粒子群优化算法(NMOPSO)求解复杂城市场景下无人机三维路径规划,MATLAB代码 原创:5种最新多目标优化算法求解多无人机协同路径规划(多起点多终点,起始点、无人机数、障碍物可自定义),MATLAB代码 原创:4种最新多目标优化算法求解多无人机协同路径规划(多起点多终点,起始点、无人机数、障碍物可自定义),MATLAB代码 高维超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值