机器学习--KNN算法

优点:精度高、对异常数值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
使用范围:数值型和标称型。
工作原理:存在一个样本数据集合,也称作训练样本,并且样本中每个数据都存在标签,即我们知道本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最邻近)的分类标签。一般来说,只选择样本数据集中前K个最相似数据,这就是k-邻近算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

在上图中,有两类不同的样本数据,分别是正方形和三角形,图中圆表示的数据是待分类的数据。换句话就是,我们不知到中间那个圆表示的数据从属哪一类,(是正方形还是三角形)
从图中看出:如果K=3,圆的最近的3个邻居是1个正方形和2个三角形,少数服从多数,基于统计的方法,判定圆表示的这个待分类数据属于三角形一类。
KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的K个最近邻居,将这些邻居的属性平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本的影响给予不同的权值。,如权值与距离成正比。
该方法在分类时有个主要的不足,当样本不平衡时,如果一个样本的容量很大,而其他样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采取权值的方法(和该样本距离小的邻居权值大)来改进。该方法的另一个不足之处就是计算量较大,因为对待每一个待分类的样本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方案就是事先对已知样本点就行剪辑,事先出去对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种方法比较容易产生误分。

### 关于头歌平台中KNN算法机器学习教程与实例 #### 头歌平台概述 头歌(Tougo)是一个专注于计算机科学教育的学习平台,提供丰富的在线课程资源和实践环境。对于机器学习领域的内容,尤其是像KNN这样经典的算法,通常会通过理论讲解、代码实现以及实际应用案例相结合的方式进行教学。 #### KNN算法简介 KNN(K-Nearest Neighbors)是一种基于实例的学习方法,既可用于分类也可用于回归分析。其核心思想是:给定一个测试样本,在训练集中找到与其最近的K个邻居,并依据这K个邻居的信息来进行决策[^2]。 #### KNN算法的主要步骤 1. 数据预处理阶段,包括标准化或归一化操作以消除不同特征间量纲差异的影响。 2. 计算待测样本到所有已知样本的距离,常用欧氏距离或其他形式的距离度量方式。 3. 找出距离最小的前K个样本作为近邻点集合。 4. 对于分类任务采用投票机制决定最终类别;而对于回归任务则取平均值或者加权平均值得出结果。 #### 距离计算公式示例 以下是两种常见距离公式的Python实现: ```python import numpy as np def euclidean_distance(x, y): """欧几里得距离""" return np.sqrt(np.sum((np.array(x) - np.array(y)) ** 2)) def manhattan_distance(x, y): """曼哈顿距离""" return np.sum(abs(np.array(x) - np.array(y))) ``` 上述函数分别实现了欧氏距离和曼哈顿距离的计算过程。 #### 实际应用场景举例 假设我们有一个简单的电影分类场景,其中每部影片由两个属性描述:“拥抱次数”和“打斗次数”。利用已有标注的数据集可以构建模型并预测未知标签的新样例所属类型[^4]。 #### 可能存在的挑战及优化方向 尽管KNN易于理解和实现,但在大规模数据集上的性能可能较差,因为每次都需要遍历整个数据库寻找最接近的邻居。因此可以通过KD树索引结构加速查询效率,或是引入降维技术减少维度灾难带来的影响[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值