1.文件路径

2.数据集
5k张places2中的arch数据集
shape:256×256×3

部分数据集和全部数据集均可在官网下载,也可以在我博客文件里下载
博客内下载可以访问我的资源里免费下载
3.代码实现
# context_encoders 图像修复的通用模型讲解 tf+keras
# 中航恒拓
# by Plusleft
# 2021.05.17
import glob
import cv2
import os
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import Sequential, Model
from tensorflow.keras.layers import Conv2D, LeakyReLU, BatchNormalization, UpSampling2D
from tensorflow.keras.layers import Activation, Input, Flatten, Dense
from tensorflow.keras.optimizers import Adam
import numpy as np
# 分配GPU资源 我这里是2080的卡,分配了百分之三十显存 如果没有显卡可能会慢一些 但不影响程序运行
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.3
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))
class ContextEncoder():
def __init__(self):
self.img_rows = 256
self.img_cols = 256
self.mask_height = 64
self.mask_width = 64
self.channels = 3
self.sum_classes = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.missing_shape = (self.mask_height, self.mask_width, self.channels)
optimizer = Adam(0.0002, 0.5)
# 生成器判别器
self.generator = self.build_generator()
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# 准备联合训练
self.discriminator.trainable = False
masked_img = Input(shape=self.img_shape)
gen_missing = self.generator(masked_img)
valid = self.discriminator(gen_missing)
self.combined = Model(masked_img, [gen_missing, valid])
self.combined.compile(loss=['mse', 'binary_crossentropy'],
loss_weights=[0.999, 0.001],
optimizer=optimizer)
def build_generator(self):
model = Sequential()
# 先定义编码器
# 输入256*256*3的遮挡图
model.add(Conv2D(64, kernel_size=4, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
# ——>128*12*64 特征图
model.add(Conv2D(64, kerne

本文介绍了一个基于Context-Encoders的图像修复模型,该模型采用tf+keras实现,并在places2数据集上进行了训练。文章详细展示了模型的构建过程、训练方法及最终修复效果。
最低0.47元/天 解锁文章
885





