深圳平均月薪6644元

深圳平均月薪6644?有这么高吗?看来我们都拖后腿了。
df = pd.read_excel(file_name) data___=pd.read_excel(file_name)#取了一个应该不会重复的名字 data__ = data___.loc[:, ['经验要求', '文凭要求', '薪资待遇_平均月薪']]#把这里改成df # 对于分类变量,使用LabelEncoder转换 le = LabelEncoder() # 用了这四个指标预测 data__['经验要求'] = le.fit_transform(data__['经验要求']) data__['文凭要求'] = le.fit_transform(data__['文凭要求']) # data['公司性质'] = le.fit_transform(data['公司性质']) # data['规模'] = le.fit_transform(data['规模']) # 将数据分为特征X和目标y X = data__.drop('薪资待遇_平均月薪', axis=1) y = data__['薪资待遇_平均月薪'] # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练线性回归模型 reg = LinearRegression().fit(X_train, y_train) # 使用模型进行预测 y_pred = reg.predict(X_test) data___['预测薪资待遇_平均月薪'] = reg.predict(X) # 计算均方误差 mse = mean_squared_error(y_test, y_pred) # 这个改成文件夹路径 data___.to_excel('深圳2023年求职信息预测.xlsx') del df['Unnamed: 0'] del df['公司性质_规模'] print(df.info) mape=np.mean(np.abs((y_test - y_pred)/y_test))*100 print("MAPE:",mape) # 展示预测结果 predictions = pd.DataFrame({'经验要求': X['经验要求'], '文凭要求': X['文凭要求'], '薪资待遇_平均月薪': y, '预测薪资待遇_平均月薪': data___['预测薪资待遇_平均月薪']}) print(predictions)
05-29
将这代码进行修正,保障可以运行, # 阶段三 数据分析 df = pd.read_excel(file_name) data___=pd.read_excel(file_name)#取了一个应该不会重复的名字 data__ = data___.loc[:, ['经验要求', '文凭要求', '薪资待遇_平均月薪']]#把这里改成df # 对于分类变量,使用LabelEncoder转换 le = LabelEncoder() # 用了这四个指标预测 data__['经验要求'] = le.fit_transform(data__['经验要求']) data__['文凭要求'] = le.fit_transform(data__['文凭要求']) # data['公司性质'] = le.fit_transform(data['公司性质']) # data['规模'] = le.fit_transform(data['规模']) # 将数据分为特征X和目标y X = data__.drop('薪资待遇_平均月薪', axis=1) y = data__['薪资待遇_平均月薪'] # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练线性回归模型 reg = LinearRegression().fit(X_train, y_train) # 使用模型进行预测 y_pred = reg.predict(X_test) data___['预测薪资待遇_平均月薪'] = reg.predict(X) # 计算均方误差 mse = mean_squared_error(y_test, y_pred) # 这个改成文件夹路径 data___.to_excel('深圳2023年求职信息预测.xlsx') del df['Unnamed: 0'] del df['公司性质_规模'] print(df.info mape=np.mean(np.abs((y_test - y_pred)/y_test))*100 print("MAPE:",mape) # 展示预测结果 predictions = pd.DataFrame({'经验要求': X['经验要求'], '文凭要求': X['文凭要求'], '薪资待遇_平均月薪': y, '预测薪资待遇_平均月薪': data___['预测薪资待遇_平均月薪']}) print(predictions)
05-28
内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值