海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis

本文介绍了使用隐语义模型(LFM)在推荐系统中进行Top-N推荐的方法,详细解释了LFM的概念、原理及在推荐系统构建中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.youkuaiyun.com/pipisorry/article/details/49256457

海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent semantic analysis

{博客内容:推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM, latent factor model)推荐。这篇博客主要讲隐语义模型,latent semantic analysis, the idea that there is a small number of hidden factors that characterize both individuals and items. An example (which surprisingly turns out NOT to be very effective as a predictor) is to categorize movies by genres (流派e.g., sci-fi, romance) and at the same time characterize what genres individual viewers like. However, there are algorithms for handling large amounts of data and finding a small number of good hidden factors to characterize both individuals and the items they like/hate.}

最近又没时间,还是下次有空写吧╮(╯_╰)╭


PS其它

[使用LFM(Latent factor model)隐语义模型进行Top-N推荐 ]

皮皮blog

from:http://blog.youkuaiyun.com/pipisorry/article/details/49256457

ref:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值