leetcode 77 组合
回溯算法的入门,回溯算法更像是一种枚举的策略,本题的组合优化过程可以理解。通过pycharm的调试,对回溯有了初步认识
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
result = []
self.backtracking(n, k, 1, [], result)
return result
def backtracking(self, n, k , startIndex, path, result):
if len(path) == k:
result.append(path[:])
return
# 优化后for i in range(startIndex, n - (k - len(path)) + 2)
for i in range(startIndex, n + 1):
path.append(i)
self.backtracking(n, k , i + 1, path, result)
path.pop()
leetcode 216 组合总和|||
这题是上题的改版属于基础,值得注意的是回溯算法的剪枝操作
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
result = []
self.backtracking(n, k, 0,)
return result
def backtracking(self, targetSum, k, currentSum, startIndex, path, result):
if currentSum > targetSum:
return
if len(path) == k:
if currentSum == targetSum:
result.append(path[:])
return
for i in range(startIndex, 9 - (k - len(path)) + 2):
currentSum += i
path.append(i)
self.backtracking(targetSum, k, currentSum, i + 1, path, result):
currentSum -= i
path.pop()
leetcode 17 电话号码的字母组合
class Solution:
def letterCombinations(self, digits: str) -> List[str]:
self.letterMap = [
"",
"",
"abc",
"def",
"ghi",
"jkl",
"mno",
"pqrs",
"tuv",
"wxyz"
]
self.result = []
self.s = ""
if len(digits) == 0:
return self.result
self.backtracking(digits, 0)
return self.result
def backtracking(self, digits, index):
if index == len(digits):
self.result.append(self.s)
return
digit = int(digits[index])
letters = self.letterMap[digit]
for i in range(len(letters)):
self.s += letters[i]
self.backtracking(digits, index + 1)
self.s = self.s[:-1]
212

被折叠的 条评论
为什么被折叠?



