内容简介 · · · · · ·
现实工作中,人们常常需要用数据说话。可是,数据自己不会说话,需要人对它进行分析和挖掘才能找到有价值的信息。概率统计是数据分析的通用语言,是大数据时代预测未来的根基。如果你有编程背景,就能以概率和统计学为工具,将数据转化为有用的信息和知识,让数据说话。本书介绍了如何借助计算而非数学方法,使用Python语言对数据进行统计分析。
通过书中有趣的案例,你可以学到探索性数据分析的整个过程,从数据收集和生成统计量,到发现模式和检验假设。你还将探索概率分布、概率法则、可视化技术,以及其他许多工具和概念。
这一版内容较第1版有很多改动,并且新增了回归、时间序列分析、生存分析和分析方法章节,以丰富你的知识。
作者简介 · · · · · ·
Allen B. Downey
是富兰克林欧林工程学院计算机科学教授,曾执教于韦尔斯利学院、科尔比学院和加州大学伯克利分校。在加州大学伯克利分校获得计算机科学博士学位。Downey已出版十余本技术书,包括Think Python、Think Bayes、Think Complexity等。
目录 · · · · · ·
前言 xi
第1章 探索性数据分析 1
1.1 统计学方法 2
1.2 全国家庭增长调查 2
1.3 数据导入 3
1.4 DataFrame 4
1.5 变量 6
1.6 数据变换 6
1.7 数据验证 8
1.8 解释数据 9
1.9 练习 10
1.10 术语 11
第2章 分布 13
2.1 表示直方图 14
2.2 绘制直方图 14
2.3 全国家庭增长调查中的变量 15
2.4 离群值 18
2.5 第一胎 18
2.6 分布概述 20
2.7 方差 21
2.8 效应量

这本书深入浅出地介绍了如何借助Python进行概率统计分析,涵盖探索性数据分析、概率分布、统计建模等多个方面,适用于数据挖掘和分析工作。通过实际案例,读者可以学习到数据收集、直方图绘制、分布建模、回归分析等关键技能,并掌握时间序列分析和生存分析等进阶主题。
最低0.47元/天 解锁文章
517





