Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
For example:
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2
. (Jump 1
step from index 0 to 1, then 3
steps to the last index.)
直接模拟:
for (i = 0; i < n; i++) {
for (j = 1; j < A[i] && i + j < n; j++) {
f[i + j] = min(f[i] + 1, f[i + j]);
}
}
这种做法可以通过小数据,但是大数据会超时。
怎么优化?
看看哪些是重复工作,以A=[2, 3, 2, 1, 1, 5]为例。
i = 0:
f = 0 1 1 * * *
i = 1:
f = 0 1 1 2 2 *
i = 2:
f = 0 1 1 2 2 *
i = 3:
f = 0 1 1 2 2 *
i = 4:
f = 0 1 1 2 2 3
可以看出,其中i = 2, i = 3没有修改f数组。
这是因为它们前面就已经有一个位置可以JUMP到了4.
所以,我们的起跳位置应该为MAX + 1, MAX是前面跳到的最远位置。
class Solution {
public:
int jump(int A[], int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int max = 0;
int f[n];
memset(f, 0, sizeof(int) * n);
for (int i = 0; i < n; i++) {
for (int j = max - i + 1; j <= A[i] && i + j < n; j++) {
f[i + j] = f[i] + 1;
}
max = max > A[i] + i ? max : A[i] + i;
}
return f[n - 1];
}
};