Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
我用了一个没有技术含量的方法,把树中序遍历,然后看是否为递增序列。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
private:
vector<int> vals;
void traverse(TreeNode *root) {
if (root != NULL) {
traverse(root->left);
vals.push_back(root->val);
traverse(root->right);
}
}
public:
bool isValidBST(TreeNode *root) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vals.clear();
traverse(root);
for (int i = 1; i < vals.size(); i++) {
if (vals[i] <= vals[i - 1]) {
return false;
}
}
return true;
}
};