使用机器学习预测天气(第一部分)

本文是使用Python和机器学习预测天气的系列教程第一部分,讲解如何从Weather Underground API收集数据,进行数据预处理,包括数据清洗、格式化和特征提取。文章详细介绍了调用API获取历史天气数据,格式化为Pandas DataFrame,提取关键特征,并对异常值进行处理,为后续的线性回归和神经网络模型构建打下基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

  本章是使用机器学习预测天气系列教程的第一部分,使用Python和机器学习来构建模型,根据从Weather Underground收集的数据来预测天气温度。该教程将由三个不同的部分组成,涵盖的主题是:

  • 数据收集和处理(本文)
  • 线性回归模型(第2章)
  • 神经网络模型(第3章)

  本教程中使用的数据将从Weather Underground的免费层API服务中收集。我将使用python的requests库来调用API,得到从2015年起Lincoln, Nebraska的天气数据。 一旦收集完成,数据将需要进行处理并汇总转成合适的格式,然后进行清理。
  第二篇文章将重点分析数据中的趋势,目标是选择合适的特性并使用python的statsmodels和scikit-learn库来构建线性回归模型。 我将讨论构建线性回归模型,必须进行必要的假设,并演示如何评估数据特征以构建一个健壮的模型。 并在最后完成模型的测试与验证。
  最后的文章将着重于使用神经网络。 我将比较构建神经网络模型和构建线性回归模型的过程,结果,准确性。

Weather Underground介绍

  Weather Underground是一家收集和分发全球各种天气测量数据的公司。 该公司提供了大量的API,可用于商业和非商业用途。 在本文中,我将介绍如何使用非商业API获取每日天气数据。所以,如果你跟随者本教程操作的话,您需要注册他们的免费开发者帐户。 此帐户提供了一个API密钥,这个密钥限制,每分钟10个,每天500个API请求。
  获取历史数据的API如下:

http://api.wunderground.com/api/API_KEY/history_YYYYMMDD/q/STATE/CITY.json  
  • API_KEY: 注册账户获取
  • YYYYMMDD: 你想要获取的天气数据的日期
  • STATE: 州名缩写
  • CITY: 你请求的城市名

调用API

  本教程调用Weather Underground API获取历史数据时,用到如下的python库。

名称 描述 来源
datetime 处理日期 标准库
time 处理时间 标准库
collections 使用该库的namedtuples来结构化数据 标准库
pandas 处理数据 第三方
requests HTTP请求处理库 第三方
matplotlib 制图库 第三方

  好,我们先导入这些库:

from datetime import datetime, timedelta  
import time  
from collections import namedtuple  
import pandas as pd  
import requests  
import matplotlib.pyplot as plt  

接下里,定义常量来保存API_KEY和BASE_URL,注意,例子中的API_KEY不可用,你要自己注册获取。代码如下:

API_KEY = '7052ad35e3c73564'  
# 第一个大括号是API_KEY,第二个是日期
BASE_URL = "http://api.wunderground.com/api/{}/history_{}/q/NE/Lincoln.json"  

然后我们初始化一个变量,存储日期,然后定义一个list,指明要从API返回的内容里获取的数据。然后定义一个namedtuple类型的变量DailySummary来存储返回的数据。代码如下:

target_date = datetime(2016, 5, 16)  
features = ["date", "meantempm", "meandewptm", "meanpressurem", "maxhumidity", "minhumidity", "maxtempm",  
            "mintempm", "maxdewptm", "mindewptm", "maxpressurem", "minpressurem", "precipm"]
DailySummary = namedtuple("DailySummary", features)  

定义一个函数,调用API,获取指定target_date开始的days天的数据,代码如下:

def extract_weather_data(url, api_key, target_date, days):  
    records = []
    for _ in range(days):
        request = BASE_URL.format(API_KEY, target_date.strftime('%Y%m%d'))
        response = requests.get(request)
        if response.status_code == 200:
            data = response.json()['history']['dailysummary'][0]
            records.append(DailySummary(
                date=target_date,
                meantempm=data['meantempm'],
                meandewptm=data['meandewptm'],
                meanpressurem=data['meanpressurem'],
                maxhumidity=data['maxhumidity'],
                minhumidity=data['minhumidity'],
                maxtempm=data['maxtempm'],
                mintempm=data['mintempm'],
                maxdewptm=data['maxdewptm'],
                mindewptm=data['mindewptm'],
                maxpressurem=data['maxpressurem'],
                minpressurem=data['minpressurem'],
                precipm=data['precipm'
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值