Recommending TV Content

本文介绍如何通过创建高质量且相关性强的内容推荐来提升Android TV应用用户体验。包括推荐内容的类型、刷新机制、定制化及分组策略等最佳实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Recommending TV Content

When interacting with TVs, users generally prefer to give minimal input before watching content. An ideal scenario for many TV users is: sit down, turn on, and watch. The fewest steps to get users to content they enjoy is generally the path they prefer.

The Android framework assists with minimum-input interaction by providing a recommendations row on the home screen. Content recommendations appear as the first row of the TV home screen after the first use of the device. Contributing recommendations from your app's content catalog can help bring users back to your app.

Figure 1. An example of the recommendations row.

This lesson teaches you how to create recommendations and provide them to the Android framework so users can easily discover and enjoy your app content. This discussion describes some code from the Android Leanback sample app.

Best Practices for Recommendations


Recommendations help users quickly find the content and apps they enjoy. Creating recommendations that are high-quality and relevant to users is an important factor in creating a great user experience with your TV app. For this reason, you should carefully consider what recommendations you present to the user and manage them closely.

Types of Recommendations

When you create recommendations, you should link users back to incomplete viewing activities or suggest activities that extend that to related content. Here are some specific type of recommendations you should consider:

  • Continuation content recommendations for the next episode for users to resume watching a series. Or, use continuation recommendations for paused movies, TV shows, or podcasts so users can get back to watching paused content in just a few clicks.
  • New content recommendations, such as for a new first-run episode, if the user finished watching another series. Also, if your app lets users subscribe to, follow, or track content, use new content recommendations for unwatched items in their list of tracked content.
  • Related content recommendations based on the users' historic viewing behavior.

For more information on how to design recommendation cards for the best user experience, seeRecommendation Row in the Android TV Design Spec.

Refreshing Recommendations

When refreshing recommendations, don't just remove and repost them, because doing so causes the recommendations to appear at the end of the recommendations row. Once a content item, such as a movie, has been played, remove it from the recommendations.

Customizing Recommendations

You can customize recommendation cards to convey branding information, by setting user interface elements such as the card's foreground and background image, color, app icon, title, and subtitle. To learn more, seeRecommendation Row in the Android TV Design Spec.

Grouping Recommendations

You can optionally group recommendations based on recommendation source. For example, your app might provide two groups of recommendations: recommendations for content the user is subscribed to, and recommendations for new trending content the user might not be aware of.

The system ranks and orders recommendations for each group separately when creating or updating the recommendation row. By providing group information for your recommendations, you can ensure that your recommendations don’t get ordered below unrelated recommendations.

Use NotificationCompat.Builder.setGroup() to set the group key string of a recommendation. For example, to mark a recommendation as belonging to a group that contains new trending content, you might call setGroup("trending").

Create a Recommendations Service


Content recommendations are created with background processing. In order for your application to contribute to recommendations, create a service that periodically adds listings from your app's catalog to the system's list of recommendations.

The following code example illustrates how to extend IntentService to create a recommendation service for your application:

public class UpdateRecommendationsService extends IntentService {
    private static final String TAG = "UpdateRecommendationsService";
    private static final int MAX_RECOMMENDATIONS = 3;

    public UpdateRecommendationsService() {
        super("RecommendationService");
    }

    @Override
    protected void onHandleIntent(Intent intent) {
        Log.d(TAG, "Updating recommendation cards");
        HashMap<String, List<Movie>> recommendations = VideoProvider.getMovieList();
        if (recommendations == null) return;

        int count = 0;

        try {
            RecommendationBuilder builder = new RecommendationBuilder()
                    .setContext(getApplicationContext())
                    .setSmallIcon(R.drawable.videos_by_google_icon);

            for (Map.Entry<String, List<Movie>> entry : recommendations.entrySet()) {
                for (Movie movie : entry.getValue()) {
                    Log.d(TAG, "Recommendation - " + movie.getTitle());

                    builder.setBackground(movie.getCardImageUrl())
                            .setId(count + 1)
                            .setPriority(MAX_RECOMMENDATIONS - count)
                            .setTitle(movie.getTitle())
                            .setDescription(getString(R.string.popular_header))
                            .setImage(movie.getCardImageUrl())
                            .setIntent(buildPendingIntent(movie))
                            .build();

                    if (++count >= MAX_RECOMMENDATIONS) {
                        break;
                    }
                }
                if (++count >= MAX_RECOMMENDATIONS) {
                    break;
                }
            }
        } catch (IOException e) {
            Log.e(TAG, "Unable to update recommendation", e);
        }
    }

    private PendingIntent buildPendingIntent(Movie movie) {
        Intent detailsIntent = new Intent(this, DetailsActivity.class);
        detailsIntent.putExtra("Movie", movie);

        TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);
        stackBuilder.addParentStack(DetailsActivity.class);
        stackBuilder.addNextIntent(detailsIntent);
        // Ensure a unique PendingIntents, otherwise all
        // recommendations end up with the same PendingIntent
        detailsIntent.setAction(Long.toString(movie.getId()));

        PendingIntent intent = stackBuilder.getPendingIntent(0, PendingIntent.FLAG_UPDATE_CURRENT);
        return intent;
    }
}

In order for this service to be recognized by the system and run, register it using your app manifest. The following code snippet illustrates how to declare this class as a service:

<manifest ... >
  <application ... >
    ...

    <service
            android:name="com.example.android.tvleanback.UpdateRecommendationsService"
            android:enabled="true" />
  </application>
</manifest>

Build Recommendations


Once your recommendation service starts running, it must create recommendations and pass them to the Android framework. The framework receives the recommendations as Notification objects that use a specific template and are marked with a specific category.

Setting the Values

To set the UI element values for the recommendation card, you create a builder class that follows the builder pattern described as follows. First, you set the values of the recommendation card elements.

public class RecommendationBuilder {
    ...

    public RecommendationBuilder setTitle(String title) {
            mTitle = title;
            return this;
        }

        public RecommendationBuilder setDescription(String description) {
            mDescription = description;
            return this;
        }

        public RecommendationBuilder setImage(String uri) {
            mImageUri = uri;
            return this;
        }

        public RecommendationBuilder setBackground(String uri) {
            mBackgroundUri = uri;
            return this;
        }
...

Creating the Notification

Once you've set the values, you then build the notification, assigning the values from the builder class to the notification, and calling NotificationCompat.Builder.build().

Also, be sure to call setLocalOnly() so the NotificationCompat.BigPictureStyle notification won't show up on other devices.

The following code example demonstrates how to build a recommendation.

public class RecommendationBuilder {
    ...

    public Notification build() throws IOException {
        ...

        Notification notification = new NotificationCompat.BigPictureStyle(
                new NotificationCompat.Builder(mContext)
                        .setContentTitle(mTitle)
                        .setContentText(mDescription)
                        .setPriority(mPriority)
                        .setLocalOnly(true)
                        .setOngoing(true)
                        .setColor(mContext.getResources().getColor(R.color.fastlane_background))
                        .setCategory(Notification.CATEGORY_RECOMMENDATION)
                        .setLargeIcon(image)
                        .setSmallIcon(mSmallIcon)
                        .setContentIntent(mIntent)
                        .setExtras(extras))
                .build();

        return notification;
    }
}

Run Recommendations Service


Your app's recommendation service must run periodically in order to create current recommendations. To run your service, create a class that runs a timer and invokes it at regular intervals. The following code example extends the BroadcastReceiver class to start periodic execution of a recommendation service every half hour:

public class BootupActivity extends BroadcastReceiver {
    private static final String TAG = "BootupActivity";

    private static final long INITIAL_DELAY = 5000;

    @Override
    public void onReceive(Context context, Intent intent) {
        Log.d(TAG, "BootupActivity initiated");
        if (intent.getAction().endsWith(Intent.ACTION_BOOT_COMPLETED)) {
            scheduleRecommendationUpdate(context);
        }
    }

    private void scheduleRecommendationUpdate(Context context) {
        Log.d(TAG, "Scheduling recommendations update");

        AlarmManager alarmManager = (AlarmManager) context.getSystemService(Context.ALARM_SERVICE);
        Intent recommendationIntent = new Intent(context, UpdateRecommendationsService.class);
        PendingIntent alarmIntent = PendingIntent.getService(context, 0, recommendationIntent, 0);

        alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
                INITIAL_DELAY,
                AlarmManager.INTERVAL_HALF_HOUR,
                alarmIntent);
    }
}

This implementation of the BroadcastReceiver class must run after start up of the TV device where it is installed. To accomplish this, register this class in your app manifest with an intent filter that listens for the completion of the device boot process. The following sample code demonstrates how to add this configuration to the manifest:

<manifest ... >
  <application ... >
    <receiver android:name="com.example.android.tvleanback.BootupActivity"
              android:enabled="true"
              android:exported="false">
      <intent-filter>
        <action android:name="android.intent.action.BOOT_COMPLETED"/>
      </intent-filter>
    </receiver>
  </application>
</manifest>

Important: Receiving a boot completed notification requires that your app requests the RECEIVE_BOOT_COMPLETED permission. For more information, see ACTION_BOOT_COMPLETED.

In your recommendation service class' onHandleIntent() method, post the recommendation to the manager as follows:

Notification notification = notificationBuilder.build();
mNotificationManager.notify(id, notification);
import panel as pn # GUI pn.extension() panels = [] # collect display context = [ {'role':'system', 'content':""" You are OrderBot, an automated service that collects orders for GLORIA. \ You greet customers first, then collect orders,\ Then ask whether to buy in store or online mall. \ You wait to collect the entire order, then aggregate it and check the final \ If the client wants to add anything else, it will take time. \ For delivery, you need an address. \ Finally you get paid. \ Make sure to clearly state all options, where to wear them, sizes, colors to uniquely\ Identify items from the form. \ Sizes include: s, m, l, xl. \ Fabrics are: wool, cotton and linen, chiffon. \ Recommend different fabrics to customers according to their characteristics,\ Wool is recommended if you want to be thick and warm,\ If you want to be comfortable and skin-friendly, cotton and linen are recommended,\ If you want elegant and bright colors, chiffon is recommended. \ Ask the customer what color they want. \ Remember the customer's preferences when recommending, \ and make recommendations based on their mentioned preferences.\ Inquire about the size at the end when the customer wants to try it on.\ You respond with short, very friendly conversation. \ The form includes \ There are two kinds of dresses Dress A: blue, pink. The price is 100. Dress B: blue, pink. The price is 110. Set: There are two Set A: blue, pink. The price is 120. Set B: white, black. The price is 130. """} ] # accumulate messages inp = pn.widgets.TextInput(value="Hi", placeholder='Enter text here…') button_conversation = pn.widgets.Button(name="Chat!") interactive_conversation = pn.bind(collect_messages, button_conversation) dashboard = pn.Column( inp, pn.Row(button_conversation), pn.panel(interactive_conversation, loading_indicator=True, height=300), ) dashboard是什么意思
05-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值