2dx- bug汇总

本文提供了解决Windows环境下使用Cocos2d-lib开发新项目时遇到的致命错误LNK1104的方法。通过将路径cocos2dx/Debug.win32加入到配置属性中,可以成功编译项目。
1)
windows下新项目报错
fatal error LNK1104: 没法打开文件“libcocos2d.lib”

项目右键-属性-配置属性-c/c++-常规
然后把cocos2dx/Debug.win32 加进去,就能编译他你哦刚过了
function euler_pde_error_analysis() % 向前欧拉法求解热方程: u_t = u_xx % 初值条件: u(x,0) = exp(x) % 边界条件: u(0,t) = exp(t), u(1,t) = exp(1+t) % 精确解: u(x,t) = exp(x + t) % 使用 r = dt/dx^2 = 0.5 稳定性条件 % 输出: % 1. 不同 dx 下的最大误差(总览表) % 2. 每个空间节点上的数值解和精确解对比 clc; clear; dx_list = [0.1, 0.05, 0.025]; % 可扩展为更多步长 r = 0.5; % 固定比值,满足稳定性要求 % 总体误差汇总表头 fprintf('==================================================================\n'); fprintf(' dx dt Nx Nt Max Error at t=1\n'); fprintf('-------- -------- ----- ----- ----------------------\n'); for k = 1:length(dx_list) dx = dx_list(k); dt = r * dx^2; % 调整 Nx,使 x=1 恰好是网格点 Nx = floor(1/dx) + 1; dx = 1 / (Nx - 1); % 精确调整 dx dt = r * dx^2; % 更新 dt % 时间步数:保证最终时间接近或等于 1 Nt = round(1 / dt); T_final = Nt * dt; % 实际达到的时间(应 ≈1) % 空间和时间网格 x = linspace(0, 1, Nx); t = (0:Nt)' * dt; % 时间向量 % 初始化解矩阵 u = zeros(Nx, Nt+1); % 初始条件 u(x,0) = exp(x) u(:,1) = exp(x'); % 时间推进 (n = 1 to Nt) for n = 1:Nt % 内部点更新 (i=2 到 Nx-1) for i = 2:Nx-1 u(i,n+1) = u(i,n) + r * (u(i+1,n) - 2*u(i,n) + u(i-1,n)); end % 强制边界条件 u(1,n+1) = exp(t(n+1)); % u(0, t_{n+1}) u(Nx,n+1) = exp(1 + t(n+1)); % u(1, t_{n+1}) end % 提取 t=T_final ≈1 时的解 u_numerical = u(:,end); % 数值解 u_exact = exp(x + T_final); % 精确解 error = abs(u_numerical - u_exact); max_error = max(error); % 输出总体误差行 fprintf('%6.3f %7.5f %3d %3d %10.2e\n', dx, dt, Nx, Nt, max_error); % ==================== 输出各节点数值解与精确解 ==================== fprintf('\n>>> 结果对比 (dx=%.3f, dt=%.6f, t=%.6f)\n', dx, dt, T_final); fprintf('%-6s %-14s %-14s %-12s\n', 'x_i', 'Numerical u_i', 'Exact u_i', 'Error'); fprintf('%-6s %-14s %-14s %-12s\n', '----', '-------------', '----------', '-----'); for i = 1:Nx fprintf('%-6.3f %-14.8f %-14.8f %-12.2e\n', ... x(i), u_numerical(i), u_exact(i), error(i)); end fprintf('\n'); % 分隔不同步长 end end 误差求出来为什么是错的
09-20
clear all clc close all %%%%%%%%%%%%%%%%%%%%%%% 基础参数 a = 1; h = 0.2756; b = 0.5; K = 5; r = 1; c = 0.5; d1 = 0.5; d2 = 0.5; tau = 0; L = 4*pi; dx = 0.1; n = round(L/dx); NX = linspace(0, L, n); Tend = 100; dt = 0.001; %%%%%%%%%%%%%%%%%%%%%%% 扩展参数敏感性分析设置 % 原始参数 + beta, m1, m2 parameters = {'r', 'K', 'h', 'b', 'c', 'd1', 'd2', 'beta', 'm1', 'm2'}; base_values = [1, 5, 0.2756, 0.5, 0.5, 0.5, 0.5, 0.15, 0.5, 0.3]; variations = 0.5:0.1:1.5; % 参数变化范围 (50% 到 150%) % 存储结果 results = struct(); %%%%%%%%%%%%%%%%%%%%%%% 进行参数敏感性分析 for param_idx = 1:length(parameters) param_name = parameters{param_idx}; fprintf('正在分析参数 %s 的敏感性...\n', param_name); mean_u_final = []; mean_v_final = []; amp_u_final = []; amp_v_final = []; for var_idx = 1:length(variations) % 设置当前参数值 current_params = base_values; current_params(param_idx) = base_values(param_idx) * variations(var_idx); % 提取参数 r_temp = current_params(1); K_temp = current_params(2); h_temp = current_params(3); b_temp = current_params(4); c_temp = current_params(5); d1_temp = current_params(6); d2_temp = current_params(7); beta_base_temp = current_params(8); m1_base_temp = current_params(9); m2_base_temp = current_params(10); % 运行模拟 [mean_u, mean_v, amp_u, amp_v] = run_simulation_extended(... r_temp, K_temp, h_temp, b_temp, c_temp, d1_temp, d2_temp, a, ... beta_base_temp, m1_base_temp, m2_base_temp, L, dx, Tend, dt); mean_u_final(var_idx) = mean_u; mean_v_final(var_idx) = mean_v; amp_u_final(var_idx) = amp_u; amp_v_final(var_idx) = amp_v; end % 存储结果 results.(param_name).variations = variations; results.(param_name).mean_u = mean_u_final; results.(param_name).mean_v = mean_v_final; results.(param_name).amp_u = amp_u_final; results.(param_name).amp_v = amp_v_final; end %%%%%%%%%%%%%%%%%%%%%%% 绘制完整参数敏感性分析图 figure('Position', [100, 100, 1600, 1200]); % 绘制平均密度敏感性 subplot(2,2,1) hold on colors = lines(length(parameters)); for i = 1:length(parameters) param_name = parameters{i}; plot(results.(param_name).variations, results.(param_name).mean_u, ... 'o-', 'LineWidth', 2, 'Color', colors(i,:), 'MarkerSize', 5, ... 'DisplayName', param_name); end xlabel('参数变化倍数') ylabel('猎物平均密度') title('参数对猎物平均密度的敏感性') legend('Location', 'bestoutside') grid on subplot(2,2,2) hold on for i = 1:length(parameters) param_name = parameters{i}; plot(results.(param_name).variations, results.(param_name).mean_v, ... 'o-', 'LineWidth', 2, 'Color', colors(i,:), 'MarkerSize', 5, ... 'DisplayName', param_name); end xlabel('参数变化倍数') ylabel('捕食者平均密度') title('参数对捕食者平均密度的敏感性') legend('Location', 'bestoutside') grid on % 绘制振幅敏感性 subplot(2,2,3) hold on for i = 1:length(parameters) param_name = parameters{i}; plot(results.(param_name).variations, results.(param_name).amp_u, ... 's-', 'LineWidth', 2, 'Color', colors(i,:), 'MarkerSize', 5, ... 'DisplayName', param_name); end xlabel('参数变化倍数') ylabel('猎物空间振幅') title('参数对猎物空间振幅的敏感性') legend('Location', 'bestoutside') grid on subplot(2,2,4) hold on for i = 1:length(parameters) param_name = parameters{i}; plot(results.(param_name).variations, results.(param_name).amp_v, ... 's-', 'LineWidth', 2, 'Color', colors(i,:), 'MarkerSize', 5, ... 'DisplayName', param_name); end xlabel('参数变化倍数') ylabel('捕食者空间振幅') title('参数对捕食者空间振幅的敏感性') legend('Location', 'bestoutside') grid on sgtitle('完整参数敏感性分析(包含beta、m1、m2)', 'FontSize', 16, 'FontWeight', 'bold'); %%%%%%%%%%%%%%%%%%%%%%% 绘制敏感性系数图 figure('Position', [100, 100, 1400, 600]); % 计算敏感性系数 sensitivity_u = zeros(length(parameters), 1); sensitivity_v = zeros(length(parameters), 1); for i = 1:length(parameters) param_name = parameters{i}; mean_u = results.(param_name).mean_u; mean_v = results.(param_name).mean_v; variations = results.(param_name).variations; % 在基准值处的敏感性 base_idx = find(variations == 1, 1); if base_idx > 1 && base_idx < length(variations) sensitivity_u(i) = (mean_u(base_idx+1) - mean_u(base_idx-1)) / (variations(base_idx+1) - variations(base_idx-1)); sensitivity_v(i) = (mean_v(base_idx+1) - mean_v(base_idx-1)) / (variations(base_idx+1) - variations(base_idx-1)); else sensitivity_u(i) = (mean_u(end) - mean_u(1)) / (variations(end) - variations(1)); sensitivity_v(i) = (mean_v(end) - mean_v(1)) / (variations(end) - variations(1)); end end % 绘制敏感性系数条形图 subplot(1,2,1) bar(sensitivity_u) set(gca, 'XTickLabel', parameters, 'XTickLabelRotation', 45) ylabel('敏感性系数') title('猎物平均密度敏感性系数') grid on subplot(1,2,2) bar(sensitivity_v) set(gca, 'XTickLabel', parameters, 'XTickLabelRotation', 45) ylabel('敏感性系数') title('捕食者平均密度敏感性系数') grid on sgtitle('完整参数敏感性系数比较', 'FontSize', 16, 'FontWeight', 'bold'); %%%%%%%%%%%%%%%%%%%%%%% 绘制beta、m1、m2的详细分析 figure('Position', [100, 100, 1200, 800]); % 选择要详细分析的参数 special_params = {'beta', 'm1', 'm2'}; colors_special = [1 0 0; 0 0.5 0; 0 0 1]; % 红、绿、蓝 subplot(2,3,1) hold on for i = 1:length(special_params) param_name = special_params{i}; plot(results.(param_name).variations, results.(param_name).mean_u, ... 'o-', 'LineWidth', 2.5, 'Color', colors_special(i,:), 'MarkerSize', 6, ... 'DisplayName', param_name); end xlabel('参数变化倍数') ylabel('猎物平均密度') title('beta/m1/m2对猎物密度的影响') legend('Location', 'best') grid on subplot(2,3,2) hold on for i = 1:length(special_params) param_name = special_params{i}; plot(results.(param_name).variations, results.(param_name).mean_v, ... 'o-', 'LineWidth', 2.5, 'Color', colors_special(i,:), 'MarkerSize', 6, ... 'DisplayName', param_name); end xlabel('参数变化倍数') ylabel('捕食者平均密度') title('beta/m1/m2对捕食者密度的影响') legend('Location', 'best') grid on subplot(2,3,3) hold on for i = 1:length(special_params) param_name = special_params{i}; plot(results.(param_name).variations, results.(param_name).amp_u, ... 's-', 'LineWidth', 2.5, 'Color', colors_special(i,:), 'MarkerSize', 6, ... 'DisplayName', param_name); end xlabel('参数变化倍数') ylabel('猎物空间振幅') title('beta/m1/m2对猎物振幅的影响') legend('Location', 'best') grid on subplot(2,3,4) hold on for i = 1:length(special_params) param_name = special_params{i}; plot(results.(param_name).variations, results.(param_name).amp_v, ... 's-', 'LineWidth', 2.5, 'Color', colors_special(i,:), 'MarkerSize', 6, ... 'DisplayName', param_name); end xlabel('参数变化倍数') ylabel('捕食者空间振幅') title('beta/m1/m2对捕食者振幅的影响') legend('Location', 'best') grid on % 绘制相图 (beta vs m1) subplot(2,3,5) beta_var = results.beta.variations; m1_var = results.m1.variations; [BB, MM] = meshgrid(beta_var, m1_var); Z_phase = zeros(length(beta_var), length(m1_var)); % 计算相图数据 for i = 1:length(beta_var) for j = 1:length(m1_var) % 使用线性插值近似 beta_val = base_values(8) * beta_var(i); m1_val = base_values(9) * m1_var(j); % 简化的稳定性判断(基于线性稳定性分析) % 这里使用一个简化的标准:捕食者密度是否能够维持 if beta_val > 0.1 && m1_val < 0.8 Z_phase(j,i) = 1; % 共存状态 elseif beta_val > 0.2 Z_phase(j,i) = 2; % 捕食者占优 else Z_phase(j,i) = 3; % 猎物占优或灭绝 end end end imagesc(beta_var, m1_var, Z_phase) xlabel('beta变化倍数') ylabel('m1变化倍数') title('beta-m1参数相图') colorbar colormap(jet(3)) % 绘制三维敏感性图 subplot(2,3,6) % 选择两个参数进行三维可视化 [X, Y] = meshgrid(results.beta.variations, results.m2.variations); Z = zeros(size(X)); for i = 1:size(X,1) for j = 1:size(X,2) beta_mult = X(i,j); m2_mult = Y(i,j); % 查找对应的结果(简化处理) beta_idx = find(results.beta.variations == beta_mult); m2_idx = find(results.m2.variations == m2_mult); if ~isempty(beta_idx) && ~isempty(m2_idx) Z(i,j) = results.beta.mean_v(beta_idx) + results.m2.mean_v(m2_idx); end end end surf(X, Y, Z) xlabel('beta变化倍数') ylabel('m2变化倍数') zlabel('捕食者密度') title('beta-m2对捕食者密度的联合影响') colorbar sgtitle('beta、m1、m2参数详细分析', 'FontSize', 16, 'FontWeight', 'bold'); %%%%%%%%%%%%%%%%%%%%%%% 结果汇总 fprintf('\n=== 完整敏感性分析结果汇总 ===\n'); [~, max_sense_u] = max(abs(sensitivity_u)); [~, max_sense_v] = max(abs(sensitivity_v)); fprintf('对猎物密度最敏感的参数: %s (敏感性系数: %.4f)\n', parameters{max_sense_u}, sensitivity_u(max_sense_u)); fprintf('对捕食者密度最敏感的参数: %s (敏感性系数: %.4f)\n', parameters{max_sense_v}, sensitivity_v(max_sense_v)); % 特别关注beta, m1, m2的结果 fprintf('\n--- beta, m1, m2 敏感性分析 ---\n'); beta_idx = find(strcmp(parameters, 'beta')); m1_idx = find(strcmp(parameters, 'm1')); m2_idx = find(strcmp(parameters, 'm2')); fprintf('beta 敏感性 - 猎物: %.4f, 捕食者: %.4f\n', sensitivity_u(beta_idx), sensitivity_v(beta_idx)); fprintf('m1 敏感性 - 猎物: %.4f, 捕食者: %.4f\n', sensitivity_u(m1_idx), sensitivity_v(m1_idx)); fprintf('m2 敏感性 - 猎物: %.4f, 捕食者: %.4f\n', sensitivity_u(m2_idx), sensitivity_v(m2_idx)); %%%%%%%%%%%%%%%%%%%%%%% 扩展的模拟函数 function [mean_u_final, mean_v_final, amp_u_final, amp_v_final] = run_simulation_extended(... r, K, h, b, c, d1, d2, a, beta_base, m1_base, m2_base, L, dx, Tend, dt) % 空间划分格数 n = round(L/dx); NX = linspace(0, L, n); % 扩散系数 r1 = d1*dt/dx^2; r2 = d2*dt/dx^2; % 边界条件索引 ind = 2:(n-1); IndR = 3:n; IndL = 1:(n-2); % 时间步数 Nstep = round(Tend/dt); % 初始条件 - 使用传入的beta_base, m1_base, m2_base Eq = [0.6, 0.1, beta_base, m1_base, m2_base]; % 注意顺序调整 U1 = zeros(n, 1); U2 = zeros(n, 1); for i = 1:n U1(i) = Eq(1) + 0.01 * sin(i*dx); U2(i) = Eq(2) + 0.01 * cos(i*dx); end % 使用传入的基准值生成空间变化的参数 beta = beta_base + 0.05 * cos(NX); m1 = m1_base + 0.01 * cos(NX); m2 = m2_base + 0.005 * cos(NX); % 主循环 for p = 1:Nstep % 扩散项 DU1 = zeros(n,1); DU1(ind) = U1(IndR) - 2*U1(ind) + U1(IndL); DU1(1) = 2*(U1(2) - U1(1)); DU1(n) = 2*(U1(n-1) - U1(n)); DU2 = zeros(n,1); DU2(ind) = U2(IndR) - 2*U2(ind) + U2(IndL); DU2(1) = 2*(U2(2) - U2(1)) - 2*c*dx*U2(1); DU2(n) = 2*(U2(n-1) - U2(n)) - 2*c*dx*U2(n); % 反应项 f = r * U1(ind) .* (1 - U1(ind)./K) - (beta(ind)' .* U1(ind) .* U2(ind)) ./ (a + U1(ind)) - h * U1(ind); g = m1(ind)' .* U2(ind) + (b * beta(ind)' .* U1(ind) .* U2(ind)) ./ (a + U1(ind)) - m2(ind)' .* U2(ind) .* U2(ind); % 更新 U1_new = zeros(n,1); U2_new = zeros(n,1); U1_new(ind) = U1(ind) + r1 * DU1(ind) + dt * f; U2_new(ind) = U2(ind) + r2 * DU2(ind) + dt * g; % 边界条件 U1_new(1) = U1_new(2); U1_new(n) = U1_new(n-1); U2_new(1) = U2_new(2) / (1 + c*dx); U2_new(n) = U2_new(n-1) / (1 + c*dx); % 非负性 U1_new = max(U1_new, 0); U2_new = max(U2_new, 0); U1 = U1_new; U2 = U2_new; % 稳定性检查 if mod(p, 1000) == 0 if any(isnan(U1)) || any(isnan(U2)) || max(U1) > 100 || max(U2) > 100 warning('模拟不稳定,参数: r=%.2f, beta=%.3f, m1=%.3f', r, beta_base, m1_base); break; end end end % 计算统计量 mean_u_final = mean(U1); mean_v_final = mean(U2); amp_u_final = max(U1) - min(U1); amp_v_final = max(U2) - min(U2); end检查该代码参数敏感性分析是否正确?
10-21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值