import time
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="../dataset_1", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10(root="../dataset_1", train=False, transform=torchvision.transforms.ToTensor(), download=True)
# 数据集长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# Dataloader装载
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
class Phd(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, (5, 5), (1, 1), 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, (5, 5), (1, 1), 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, (5, 5), (1, 1), 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4, 64),
nn.Linear(64, 10)
)
def forward(self, input):
output = self.model(input)
return output
phd = Phd()
phd = phd.cuda()
# 损失函数
loss_fun = nn.CrossEntropyLoss()
loss_fun = loss_fun.cuda()
# 优化器
learning_rate = 1e-2
print("学习率:{}".format(learning_rate))
optimizer = torch.optim.SGD(phd.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
total_train_step = 0 # 训练次数
total_test_step = 0 # 测试次数
epoch = 1 # 训练轮数
# 添加tensorboard
writer = SummaryWriter("/logs_train")
# 开始时间
start_time = time.time()
for i in range(epoch):
print("----------第{}轮训练开始----------".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
imgs = imgs.cuda()
targets = targets.cuda()
outputs = phd(imgs)
loss = loss_fun(outputs, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step+1
if (total_train_step+1) % 100 == 0:
end_time = time.time()
print("time:{:.2f},训练次数:{},loss:{:3f}".format(end_time-start_time,total_train_step+1, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤开始
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
imgs = imgs.cuda()
targets = targets.cuda()
outputs = phd(imgs)
loss = loss_fun(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy +accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step = total_test_loss + 1
# 保存文件
if i + 1 == 1:
torch.save(phd, "phd_{}_gpu.pth".format(i+1))
print("模型已保存")
writer.close()
import torch
import torchvision
from PIL import Image
from torch import nn, tensor
image_path = "imgs/v2iqiw1mvyrv2iqiw1mvyr.jpg"
image = Image.open(image_path)
print(image)
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((32, 32)),
torchvision.transforms.ToTensor()
])
image = transform(image)
image = image.cuda()
print(image.shape)
class Phd(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, (5, 5), (1, 1), 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, (5, 5), (1, 1), 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, (5, 5), (1, 1), 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4, 64),
nn.Linear(64, 10)
)
def forward(self, input):
output = self.model(input)
return output
model = torch.load("phd_30_gpu.pth")
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():
output = model(image)
print(output)
val = output.argmax(1)
print(val)
my_list = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
for i in range(9):
if val == tensor([i], device='cuda:0'):
print("The object in the picture is {}!".format(my_list[i]))
前后分别是训练与测试代码,自定义训练轮数开始训练,训练完成后修改测试代码中".pth"文件名,并添加图片至指定相对路径。