Note_20140805——Memory Read/Write timing cycles

本文主要探讨了内存读写周期中的关键参数,如访问时间、读恢复时间和写恢复时间。内存读周期开始于地址输入,期间地址必须保持稳定,数据输出在一定延迟后变为有效。读写周期时间由访问时间、读恢复时间和写恢复时间组成。写周期则涉及到地址设置时间、写脉冲宽度等,整个过程中数据输入需保持稳定。需要注意的是,这些时间是设备本身的最小要求,实际系统的访问和周期时间会因I/O控制逻辑、系统总线逻辑和内存接口逻辑的延迟而变得更长。

OK. As you have know, all the materials is just my own note. Hopefully, you could find something interesting to you.



好的模块划分可以使得设计优化更加容易,调试的时候也更加哟利于问题的定位。



Memory Read/Write timing cycles 

The most important timing parameter to be considered in choosing a memory device is the access time. The maximum time delay from an address input to a data output is longer than the delay between a chip enable and a data output, and consequently the former timing figure is normally considered to be the access time. The access time for commonly used  RAMs varies from 50 to 500 ns.

For a read operation, once the output data are valid, the address input cannot be changed immediately to start another read operation. This is because the device needs a certain amount of time, called read recovery time, to complete its internal operations before the next memory operation. The sum of the access time and read recovery time is the memory read cycle time. This is the time needed between the start of a read operation and the start of the next memory cycle. 

The memory write cycle time can be similarly defined and may be different from the read cycle time. The Figure below illustrates the timing of a memory read cycle. The address is applied at point A, which is the beginning of the read cycle, and must be held stable during the entire cycle. In order to reduce the access time, the chip enable input should be applied before point B. The data output becomes valid after point C and remains valid as long as the address and chip enable inputs hold. 

The R/W control input is not shown in the timing diagram for the read cycle, but should remain high throughout the entire cycle.




A typical write cycle is shown in Figure above. In addition to the address and chip enable inputs, an active low write pulse on the R/W line and the data to be stored must be applied during the write cvcle. The timing of data input is less restrictive and can be satisfied simply by holding the data input stable during the entire cycle. However, the application of the write pulse has two critical timing parameters: the address setup time and the write pulse width. The address setup time is the time required for the address to stabilize and is the time that must elapse before the write pulse can be applied. 

In the Figure above, the address setup time is the time interval between points A and B. The write pulse width defines the amount of time that the write input must remain active low. The write cycle time is the time interval between points A and D and is the sum of address setup time, write pulse width, and write recovery time. 

It is important to note that the access time and cycle time discussed in this section are the minimum timing requirements for the memory devices themselves. The access time and cycle time for the memory system as a whole are considerably longer because of the delays resulting from the I/O control logic, system bus logic, and memory interface logic.


/** ****************************************************************************** * @file stm32f1xx_ll_fsmc.h * @author MCD Application Team * @version V1.1.1 * @date 12-May-2017 * @brief Header file of FSMC HAL module. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_LL_FSMC_H #define __STM32F1xx_LL_FSMC_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal_def.h" /** @addtogroup STM32F1xx_HAL_Driver * @{ */ #if defined(FSMC_BANK1) /** @addtogroup FSMC_LL * @{ */ /* Exported typedef ----------------------------------------------------------*/ /** @defgroup FSMC_NORSRAM_Exported_typedef FSMC Low Layer Exported Types * @{ */ /** * @brief FSMC NORSRAM Configuration Structure definition */ typedef struct { uint32_t NSBank; /*!< Specifies the NORSRAM memory device that will be used. This parameter can be a value of @ref FSMC_NORSRAM_Bank */ uint32_t DataAddressMux; /*!< Specifies whether the address and data values are multiplexed on the data bus or not. This parameter can be a value of @ref FSMC_Data_Address_Bus_Multiplexing */ uint32_t MemoryType; /*!< Specifies the type of external memory attached to the corresponding memory device. This parameter can be a value of @ref FSMC_Memory_Type */ uint32_t MemoryDataWidth; /*!< Specifies the external memory device width. This parameter can be a value of @ref FSMC_NORSRAM_Data_Width */ uint32_t BurstAccessMode; /*!< Enables or disables the burst access mode for Flash memory, valid only with synchronous burst Flash memories. This parameter can be a value of @ref FSMC_Burst_Access_Mode */ uint32_t WaitSignalPolarity; /*!< Specifies the wait signal polarity, valid only when accessing the Flash memory in burst mode. This parameter can be a value of @ref FSMC_Wait_Signal_Polarity */ uint32_t WrapMode; /*!< Enables or disables the Wrapped burst access mode for Flash memory, valid only when accessing Flash memories in burst mode. This parameter can be a value of @ref FSMC_Wrap_Mode */ uint32_t WaitSignalActive; /*!< Specifies if the wait signal is asserted by the memory one clock cycle before the wait state or during the wait state, valid only when accessing memories in burst mode. This parameter can be a value of @ref FSMC_Wait_Timing */ uint32_t WriteOperation; /*!< Enables or disables the write operation in the selected device by the FSMC. This parameter can be a value of @ref FSMC_Write_Operation */ uint32_t WaitSignal; /*!< Enables or disables the wait state insertion via wait signal, valid for Flash memory access in burst mode. This parameter can be a value of @ref FSMC_Wait_Signal */ uint32_t ExtendedMode; /*!< Enables or disables the extended mode. This parameter can be a value of @ref FSMC_Extended_Mode */ uint32_t AsynchronousWait; /*!< Enables or disables wait signal during asynchronous transfers, valid only with asynchronous Flash memories. This parameter can be a value of @ref FSMC_AsynchronousWait */ uint32_t WriteBurst; /*!< Enables or disables the write burst operation. This parameter can be a value of @ref FSMC_Write_Burst */ }FSMC_NORSRAM_InitTypeDef; /** * @brief FSMC NORSRAM Timing parameters structure definition */ typedef struct { uint32_t AddressSetupTime; /*!< Defines the number of HCLK cycles to configure the duration of the address setup time. This parameter can be a value between Min_Data = 0 and Max_Data = 15. @note This parameter is not used with synchronous NOR Flash memories. */ uint32_t AddressHoldTime; /*!< Defines the number of HCLK cycles to configure the duration of the address hold time. This parameter can be a value between Min_Data = 1 and Max_Data = 15. @note This parameter is not used with synchronous NOR Flash memories. */ uint32_t DataSetupTime; /*!< Defines the number of HCLK cycles to configure the duration of the data setup time. This parameter can be a value between Min_Data = 1 and Max_Data = 255. @note This parameter is used for SRAMs, ROMs and asynchronous multiplexed NOR Flash memories. */ uint32_t BusTurnAroundDuration; /*!< Defines the number of HCLK cycles to configure the duration of the bus turnaround. This parameter can be a value between Min_Data = 0 and Max_Data = 15. @note This parameter is only used for multiplexed NOR Flash memories. */ uint32_t CLKDivision; /*!< Defines the period of CLK clock output signal, expressed in number of HCLK cycles. This parameter can be a value between Min_Data = 2 and Max_Data = 16. @note This parameter is not used for asynchronous NOR Flash, SRAM or ROM accesses. */ uint32_t DataLatency; /*!< Defines the number of memory clock cycles to issue to the memory before getting the first data. The parameter value depends on the memory type as shown below: - It must be set to 0 in case of a CRAM - It is don't care in asynchronous NOR, SRAM or ROM accesses - It may assume a value between Min_Data = 2 and Max_Data = 17 in NOR Flash memories with synchronous burst mode enable */ uint32_t AccessMode; /*!< Specifies the asynchronous access mode. This parameter can be a value of @ref FSMC_Access_Mode */ }FSMC_NORSRAM_TimingTypeDef; #if (defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG)) /** * @brief FSMC NAND Configuration Structure definition */ typedef struct { uint32_t NandBank; /*!< Specifies the NAND memory device that will be used. This parameter can be a value of @ref FSMC_NAND_Bank */ uint32_t Waitfeature; /*!< Enables or disables the Wait feature for the NAND Memory device. This parameter can be any value of @ref FSMC_Wait_feature */ uint32_t MemoryDataWidth; /*!< Specifies the external memory device width. This parameter can be any value of @ref FSMC_NAND_Data_Width */ uint32_t EccComputation; /*!< Enables or disables the ECC computation. This parameter can be any value of @ref FSMC_ECC */ uint32_t ECCPageSize; /*!< Defines the page size for the extended ECC. This parameter can be any value of @ref FSMC_ECC_Page_Size */ uint32_t TCLRSetupTime; /*!< Defines the number of HCLK cycles to configure the delay between CLE low and RE low. This parameter can be a value between Min_Data = 0 and Max_Data = 255 */ uint32_t TARSetupTime; /*!< Defines the number of HCLK cycles to configure the delay between ALE low and RE low. This parameter can be a number between Min_Data = 0 and Max_Data = 255 */ }FSMC_NAND_InitTypeDef; /** * @brief FSMC NAND/PCCARD Timing parameters structure definition */ typedef struct { uint32_t SetupTime; /*!< Defines the number of HCLK cycles to setup address before the command assertion for NAND-Flash read or write access to common/Attribute or I/O memory space (depending on the memory space timing to be configured). This parameter can be a value between Min_Data = 0 and Max_Data = 255 */ uint32_t WaitSetupTime; /*!< Defines the minimum number of HCLK cycles to assert the command for NAND-Flash read or write access to common/Attribute or I/O memory space (depending on the memory space timing to be configured). This parameter can be a number between Min_Data = 0 and Max_Data = 255 */ uint32_t HoldSetupTime; /*!< Defines the number of HCLK clock cycles to hold address (and data for write access) after the command de-assertion for NAND-Flash read or write access to common/Attribute or I/O memory space (depending on the memory space timing to be configured). This parameter can be a number between Min_Data = 0 and Max_Data = 255 */ uint32_t HiZSetupTime; /*!< Defines the number of HCLK clock cycles during which the data bus is kept in HiZ after the start of a NAND-Flash write access to common/Attribute or I/O memory space (depending on the memory space timing to be configured). This parameter can be a number between Min_Data = 0 and Max_Data = 255 */ }FSMC_NAND_PCC_TimingTypeDef; /** * @brief FSMC NAND Configuration Structure definition */ typedef struct { uint32_t Waitfeature; /*!< Enables or disables the Wait feature for the PCCARD Memory device. This parameter can be any value of @ref FSMC_Wait_feature */ uint32_t TCLRSetupTime; /*!< Defines the number of HCLK cycles to configure the delay between CLE low and RE low. This parameter can be a value between Min_Data = 0 and Max_Data = 255 */ uint32_t TARSetupTime; /*!< Defines the number of HCLK cycles to configure the delay between ALE low and RE low. This parameter can be a number between Min_Data = 0 and Max_Data = 255 */ }FSMC_PCCARD_InitTypeDef; #endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG */ /** * @} */ /* Exported constants --------------------------------------------------------*/ /** @defgroup FSMC_Exported_Constants FSMC Low Layer Exported Constants * @{ */ /** @defgroup FSMC_NORSRAM_Exported_constants FSMC NOR/SRAM Exported constants * @{ */ /** @defgroup FSMC_NORSRAM_Bank FSMC NOR/SRAM Bank * @{ */ #define FSMC_NORSRAM_BANK1 0x00000000U #define FSMC_NORSRAM_BANK2 0x00000002U #define FSMC_NORSRAM_BANK3 0x00000004U #define FSMC_NORSRAM_BANK4 0x00000006U /** * @} */ /** @defgroup FSMC_Data_Address_Bus_Multiplexing FSMC Data Address Bus Multiplexing * @{ */ #define FSMC_DATA_ADDRESS_MUX_DISABLE 0x00000000U #define FSMC_DATA_ADDRESS_MUX_ENABLE ((uint32_t)FSMC_BCRx_MUXEN) /** * @} */ /** @defgroup FSMC_Memory_Type FSMC Memory Type * @{ */ #define FSMC_MEMORY_TYPE_SRAM 0x00000000U #define FSMC_MEMORY_TYPE_PSRAM ((uint32_t)FSMC_BCRx_MTYP_0) #define FSMC_MEMORY_TYPE_NOR ((uint32_t)FSMC_BCRx_MTYP_1) /** * @} */ /** @defgroup FSMC_NORSRAM_Data_Width FSMC NOR/SRAM Data Width * @{ */ #define FSMC_NORSRAM_MEM_BUS_WIDTH_8 0x00000000U #define FSMC_NORSRAM_MEM_BUS_WIDTH_16 ((uint32_t)FSMC_BCRx_MWID_0) #define FSMC_NORSRAM_MEM_BUS_WIDTH_32 ((uint32_t)FSMC_BCRx_MWID_1) /** * @} */ /** @defgroup FSMC_NORSRAM_Flash_Access FSMC NOR/SRAM Flash Access * @{ */ #define FSMC_NORSRAM_FLASH_ACCESS_ENABLE ((uint32_t)FSMC_BCRx_FACCEN) #define FSMC_NORSRAM_FLASH_ACCESS_DISABLE 0x00000000U /** * @} */ /** @defgroup FSMC_Burst_Access_Mode FSMC Burst Access Mode * @{ */ #define FSMC_BURST_ACCESS_MODE_DISABLE 0x00000000U #define FSMC_BURST_ACCESS_MODE_ENABLE ((uint32_t)FSMC_BCRx_BURSTEN) /** * @} */ /** @defgroup FSMC_Wait_Signal_Polarity FSMC Wait Signal Polarity * @{ */ #define FSMC_WAIT_SIGNAL_POLARITY_LOW 0x00000000U #define FSMC_WAIT_SIGNAL_POLARITY_HIGH ((uint32_t)FSMC_BCRx_WAITPOL) /** * @} */ /** @defgroup FSMC_Wrap_Mode FSMC Wrap Mode * @{ */ #define FSMC_WRAP_MODE_DISABLE 0x00000000U #define FSMC_WRAP_MODE_ENABLE ((uint32_t)FSMC_BCRx_WRAPMOD) /** * @} */ /** @defgroup FSMC_Wait_Timing FSMC Wait Timing * @{ */ #define FSMC_WAIT_TIMING_BEFORE_WS 0x00000000U #define FSMC_WAIT_TIMING_DURING_WS ((uint32_t)FSMC_BCRx_WAITCFG) /** * @} */ /** @defgroup FSMC_Write_Operation FSMC Write Operation * @{ */ #define FSMC_WRITE_OPERATION_DISABLE 0x00000000U #define FSMC_WRITE_OPERATION_ENABLE ((uint32_t)FSMC_BCRx_WREN) /** * @} */ /** @defgroup FSMC_Wait_Signal FSMC Wait Signal * @{ */ #define FSMC_WAIT_SIGNAL_DISABLE 0x00000000U #define FSMC_WAIT_SIGNAL_ENABLE ((uint32_t)FSMC_BCRx_WAITEN) /** * @} */ /** @defgroup FSMC_Extended_Mode FSMC Extended Mode * @{ */ #define FSMC_EXTENDED_MODE_DISABLE 0x00000000U #define FSMC_EXTENDED_MODE_ENABLE ((uint32_t)FSMC_BCRx_EXTMOD) /** * @} */ /** @defgroup FSMC_AsynchronousWait FSMC Asynchronous Wait * @{ */ #define FSMC_ASYNCHRONOUS_WAIT_DISABLE 0x00000000U #define FSMC_ASYNCHRONOUS_WAIT_ENABLE ((uint32_t)FSMC_BCRx_ASYNCWAIT) /** * @} */ /** @defgroup FSMC_Write_Burst FSMC Write Burst * @{ */ #define FSMC_WRITE_BURST_DISABLE 0x00000000U #define FSMC_WRITE_BURST_ENABLE ((uint32_t)FSMC_BCRx_CBURSTRW) /** * @} */ /** @defgroup FSMC_Access_Mode FSMC Access Mode * @{ */ #define FSMC_ACCESS_MODE_A 0x00000000U #define FSMC_ACCESS_MODE_B ((uint32_t)FSMC_BTRx_ACCMOD_0) #define FSMC_ACCESS_MODE_C ((uint32_t)FSMC_BTRx_ACCMOD_1) #define FSMC_ACCESS_MODE_D ((uint32_t)(FSMC_BTRx_ACCMOD_0 | FSMC_BTRx_ACCMOD_1)) /** * @} */ /** * @} */ #if (defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG)) /** @defgroup FSMC_NAND_Controller FSMC NAND and PCCARD Controller * @{ */ /** @defgroup FSMC_NAND_Bank FSMC NAND Bank * @{ */ #define FSMC_NAND_BANK2 0x00000010U #define FSMC_NAND_BANK3 0x00000100U /** * @} */ /** @defgroup FSMC_Wait_feature FSMC Wait feature * @{ */ #define FSMC_NAND_PCC_WAIT_FEATURE_DISABLE 0x00000000U #define FSMC_NAND_PCC_WAIT_FEATURE_ENABLE ((uint32_t)FSMC_PCRx_PWAITEN) /** * @} */ /** @defgroup FSMC_PCR_Memory_Type FSMC PCR Memory Type * @{ */ #define FSMC_PCR_MEMORY_TYPE_PCCARD 0x00000000U #define FSMC_PCR_MEMORY_TYPE_NAND ((uint32_t)FSMC_PCRx_PTYP) /** * @} */ /** @defgroup FSMC_NAND_Data_Width FSMC NAND Data Width * @{ */ #define FSMC_NAND_PCC_MEM_BUS_WIDTH_8 0x00000000U #define FSMC_NAND_PCC_MEM_BUS_WIDTH_16 ((uint32_t)FSMC_PCRx_PWID_0) /** * @} */ /** @defgroup FSMC_ECC FSMC NAND ECC * @{ */ #define FSMC_NAND_ECC_DISABLE 0x00000000U #define FSMC_NAND_ECC_ENABLE ((uint32_t)FSMC_PCRx_ECCEN) /** * @} */ /** @defgroup FSMC_ECC_Page_Size FSMC ECC Page Size * @{ */ #define FSMC_NAND_ECC_PAGE_SIZE_256BYTE 0x00000000U #define FSMC_NAND_ECC_PAGE_SIZE_512BYTE ((uint32_t)FSMC_PCRx_ECCPS_0) #define FSMC_NAND_ECC_PAGE_SIZE_1024BYTE ((uint32_t)FSMC_PCRx_ECCPS_1) #define FSMC_NAND_ECC_PAGE_SIZE_2048BYTE ((uint32_t)FSMC_PCRx_ECCPS_0|FSMC_PCRx_ECCPS_1) #define FSMC_NAND_ECC_PAGE_SIZE_4096BYTE ((uint32_t)FSMC_PCRx_ECCPS_2) #define FSMC_NAND_ECC_PAGE_SIZE_8192BYTE ((uint32_t)FSMC_PCRx_ECCPS_0|FSMC_PCRx_ECCPS_2) /** * @} */ /** * @} */ #endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG */ /** @defgroup FSMC_LL_Interrupt_definition FSMC Interrupt definition * @brief FSMC Interrupt definition * @{ */ #define FSMC_IT_RISING_EDGE ((uint32_t)FSMC_SRx_IREN) #define FSMC_IT_LEVEL ((uint32_t)FSMC_SRx_ILEN) #define FSMC_IT_FALLING_EDGE ((uint32_t)FSMC_SRx_IFEN) /** * @} */ /** @defgroup FSMC_LL_Flag_definition FSMC Flag definition * @brief FSMC Flag definition * @{ */ #define FSMC_FLAG_RISING_EDGE ((uint32_t)FSMC_SRx_IRS) #define FSMC_FLAG_LEVEL ((uint32_t)FSMC_SRx_ILS) #define FSMC_FLAG_FALLING_EDGE ((uint32_t)FSMC_SRx_IFS) #define FSMC_FLAG_FEMPT ((uint32_t)FSMC_SRx_FEMPT) /** * @} */ /** @defgroup FSMC_LL_Alias_definition FSMC Alias definition * @{ */ #define FSMC_NORSRAM_TypeDef FSMC_Bank1_TypeDef #define FSMC_NORSRAM_EXTENDED_TypeDef FSMC_Bank1E_TypeDef #define FSMC_NAND_TypeDef FSMC_Bank2_3_TypeDef #define FSMC_PCCARD_TypeDef FSMC_Bank4_TypeDef #define FSMC_NORSRAM_DEVICE FSMC_Bank1 #define FSMC_NORSRAM_EXTENDED_DEVICE FSMC_Bank1E #define FSMC_NAND_DEVICE FSMC_Bank2_3 #define FSMC_PCCARD_DEVICE FSMC_Bank4 /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup FSMC_Exported_Macros FSMC Low Layer Exported Macros * @{ */ /** @defgroup FSMC_LL_NOR_Macros FSMC NOR/SRAM Exported Macros * @brief macros to handle NOR device enable/disable and read/write operations * @{ */ /** * @brief Enable the NORSRAM device access. * @param __INSTANCE__: FSMC_NORSRAM Instance * @param __BANK__: FSMC_NORSRAM Bank * @retval none */ #define __FSMC_NORSRAM_ENABLE(__INSTANCE__, __BANK__) SET_BIT((__INSTANCE__)->BTCR[(__BANK__)], FSMC_BCRx_MBKEN) /** * @brief Disable the NORSRAM device access. * @param __INSTANCE__: FSMC_NORSRAM Instance * @param __BANK__: FSMC_NORSRAM Bank * @retval none */ #define __FSMC_NORSRAM_DISABLE(__INSTANCE__, __BANK__) CLEAR_BIT((__INSTANCE__)->BTCR[(__BANK__)], FSMC_BCRx_MBKEN) /** * @} */ #if (defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG)) /** @defgroup FSMC_LL_NAND_Macros FSMC NAND Macros * @brief macros to handle NAND device enable/disable * @{ */ /** * @brief Enable the NAND device access. * @param __INSTANCE__: FSMC_NAND Instance * @param __BANK__: FSMC_NAND Bank * @retval None */ #define __FSMC_NAND_ENABLE(__INSTANCE__, __BANK__) (((__BANK__) == FSMC_NAND_BANK2)? SET_BIT((__INSTANCE__)->PCR2, FSMC_PCRx_PBKEN): \ SET_BIT((__INSTANCE__)->PCR3, FSMC_PCRx_PBKEN)) /** * @brief Disable the NAND device access. * @param __INSTANCE__: FSMC_NAND Instance * @param __BANK__: FSMC_NAND Bank * @retval None */ #define __FSMC_NAND_DISABLE(__INSTANCE__, __BANK__) (((__BANK__) == FSMC_NAND_BANK2)? CLEAR_BIT((__INSTANCE__)->PCR2, FSMC_PCRx_PBKEN): \ CLEAR_BIT((__INSTANCE__)->PCR3, FSMC_PCRx_PBKEN)) /** * @} */ /** @defgroup FSMC_LL_PCCARD_Macros FSMC PCCARD Macros * @brief macros to handle PCCARD read/write operations * @{ */ /** * @brief Enable the PCCARD device access. * @param __INSTANCE__: FSMC_PCCARD Instance * @retval None */ #define __FSMC_PCCARD_ENABLE(__INSTANCE__) SET_BIT((__INSTANCE__)->PCR4, FSMC_PCRx_PBKEN) /** * @brief Disable the PCCARD device access. * @param __INSTANCE__: FSMC_PCCARD Instance * @retval None */ #define __FSMC_PCCARD_DISABLE(__INSTANCE__) CLEAR_BIT((__INSTANCE__)->PCR4, FSMC_PCRx_PBKEN) /** * @} */ /** @defgroup FSMC_LL_Flag_Interrupt_Macros FSMC Flag&Interrupt Macros * @brief macros to handle FSMC flags and interrupts * @{ */ /** * @brief Enable the NAND device interrupt. * @param __INSTANCE__: FSMC_NAND Instance * @param __BANK__: FSMC_NAND Bank * @param __INTERRUPT__: FSMC_NAND interrupt * This parameter can be any combination of the following values: * @arg FSMC_IT_RISING_EDGE: Interrupt rising edge. * @arg FSMC_IT_LEVEL: Interrupt level. * @arg FSMC_IT_FALLING_EDGE: Interrupt falling edge. * @retval None */ #define __FSMC_NAND_ENABLE_IT(__INSTANCE__, __BANK__, __INTERRUPT__) (((__BANK__) == FSMC_NAND_BANK2)? SET_BIT((__INSTANCE__)->SR2, (__INTERRUPT__)): \ SET_BIT((__INSTANCE__)->SR3, (__INTERRUPT__))) /** * @brief Disable the NAND device interrupt. * @param __INSTANCE__: FSMC_NAND Instance * @param __BANK__: FSMC_NAND Bank * @param __INTERRUPT__: FSMC_NAND interrupt * This parameter can be any combination of the following values: * @arg FSMC_IT_RISING_EDGE: Interrupt rising edge. * @arg FSMC_IT_LEVEL: Interrupt level. * @arg FSMC_IT_FALLING_EDGE: Interrupt falling edge. * @retval None */ #define __FSMC_NAND_DISABLE_IT(__INSTANCE__, __BANK__, __INTERRUPT__) (((__BANK__) == FSMC_NAND_BANK2)? CLEAR_BIT((__INSTANCE__)->SR2, (__INTERRUPT__)): \ CLEAR_BIT((__INSTANCE__)->SR3, (__INTERRUPT__))) /** * @brief Get flag status of the NAND device. * @param __INSTANCE__: FSMC_NAND Instance * @param __BANK__ : FSMC_NAND Bank * @param __FLAG__ : FSMC_NAND flag * This parameter can be any combination of the following values: * @arg FSMC_FLAG_RISING_EDGE: Interrupt rising edge flag. * @arg FSMC_FLAG_LEVEL: Interrupt level edge flag. * @arg FSMC_FLAG_FALLING_EDGE: Interrupt falling edge flag. * @arg FSMC_FLAG_FEMPT: FIFO empty flag. * @retval The state of FLAG (SET or RESET). */ #define __FSMC_NAND_GET_FLAG(__INSTANCE__, __BANK__, __FLAG__) (((__BANK__) == FSMC_NAND_BANK2)? (((__INSTANCE__)->SR2 &(__FLAG__)) == (__FLAG__)): \ (((__INSTANCE__)->SR3 &(__FLAG__)) == (__FLAG__))) /** * @brief Clear flag status of the NAND device. * @param __INSTANCE__: FSMC_NAND Instance * @param __BANK__: FSMC_NAND Bank * @param __FLAG__: FSMC_NAND flag * This parameter can be any combination of the following values: * @arg FSMC_FLAG_RISING_EDGE: Interrupt rising edge flag. * @arg FSMC_FLAG_LEVEL: Interrupt level edge flag. * @arg FSMC_FLAG_FALLING_EDGE: Interrupt falling edge flag. * @arg FSMC_FLAG_FEMPT: FIFO empty flag. * @retval None */ #define __FSMC_NAND_CLEAR_FLAG(__INSTANCE__, __BANK__, __FLAG__) (((__BANK__) == FSMC_NAND_BANK2)? CLEAR_BIT((__INSTANCE__)->SR2, (__FLAG__)): \ CLEAR_BIT((__INSTANCE__)->SR3, (__FLAG__))) /** * @brief Enable the PCCARD device interrupt. * @param __INSTANCE__: FSMC_PCCARD Instance * @param __INTERRUPT__: FSMC_PCCARD interrupt * This parameter can be any combination of the following values: * @arg FSMC_IT_RISING_EDGE: Interrupt rising edge. * @arg FSMC_IT_LEVEL: Interrupt level. * @arg FSMC_IT_FALLING_EDGE: Interrupt falling edge. * @retval None */ #define __FSMC_PCCARD_ENABLE_IT(__INSTANCE__, __INTERRUPT__) SET_BIT((__INSTANCE__)->SR4, (__INTERRUPT__)) /** * @brief Disable the PCCARD device interrupt. * @param __INSTANCE__: FSMC_PCCARD Instance * @param __INTERRUPT__: FSMC_PCCARD interrupt * This parameter can be any combination of the following values: * @arg FSMC_IT_RISING_EDGE: Interrupt rising edge. * @arg FSMC_IT_LEVEL: Interrupt level. * @arg FSMC_IT_FALLING_EDGE: Interrupt falling edge. * @retval None */ #define __FSMC_PCCARD_DISABLE_IT(__INSTANCE__, __INTERRUPT__) CLEAR_BIT((__INSTANCE__)->SR4, (__INTERRUPT__)) /** * @brief Get flag status of the PCCARD device. * @param __INSTANCE__: FSMC_PCCARD Instance * @param __FLAG__: FSMC_PCCARD flag * This parameter can be any combination of the following values: * @arg FSMC_FLAG_RISING_EDGE: Interrupt rising edge flag. * @arg FSMC_FLAG_LEVEL: Interrupt level edge flag. * @arg FSMC_FLAG_FALLING_EDGE: Interrupt falling edge flag. * @arg FSMC_FLAG_FEMPT: FIFO empty flag. * @retval The state of FLAG (SET or RESET). */ #define __FSMC_PCCARD_GET_FLAG(__INSTANCE__, __FLAG__) (((__INSTANCE__)->SR4 &(__FLAG__)) == (__FLAG__)) /** * @brief Clear flag status of the PCCARD device. * @param __INSTANCE__: FSMC_PCCARD Instance * @param __FLAG__: FSMC_PCCARD flag * This parameter can be any combination of the following values: * @arg FSMC_FLAG_RISING_EDGE: Interrupt rising edge flag. * @arg FSMC_FLAG_LEVEL: Interrupt level edge flag. * @arg FSMC_FLAG_FALLING_EDGE: Interrupt falling edge flag. * @arg FSMC_FLAG_FEMPT: FIFO empty flag. * @retval None */ #define __FSMC_PCCARD_CLEAR_FLAG(__INSTANCE__, __FLAG__) CLEAR_BIT((__INSTANCE__)->SR4, (__FLAG__)) /** * @} */ #endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG */ /** * @} */ /** @defgroup FSMC_LL_Private_Macros FSMC Low Layer Private Macros * @{ */ #define IS_FSMC_NORSRAM_BANK(__BANK__) (((__BANK__) == FSMC_NORSRAM_BANK1) || \ ((__BANK__) == FSMC_NORSRAM_BANK2) || \ ((__BANK__) == FSMC_NORSRAM_BANK3) || \ ((__BANK__) == FSMC_NORSRAM_BANK4)) #define IS_FSMC_MUX(__MUX__) (((__MUX__) == FSMC_DATA_ADDRESS_MUX_DISABLE) || \ ((__MUX__) == FSMC_DATA_ADDRESS_MUX_ENABLE)) #define IS_FSMC_MEMORY(__MEMORY__) (((__MEMORY__) == FSMC_MEMORY_TYPE_SRAM) || \ ((__MEMORY__) == FSMC_MEMORY_TYPE_PSRAM)|| \ ((__MEMORY__) == FSMC_MEMORY_TYPE_NOR)) #define IS_FSMC_NORSRAM_MEMORY_WIDTH(__WIDTH__) (((__WIDTH__) == FSMC_NORSRAM_MEM_BUS_WIDTH_8) || \ ((__WIDTH__) == FSMC_NORSRAM_MEM_BUS_WIDTH_16) || \ ((__WIDTH__) == FSMC_NORSRAM_MEM_BUS_WIDTH_32)) #define IS_FSMC_WRITE_BURST(__BURST__) (((__BURST__) == FSMC_WRITE_BURST_DISABLE) || \ ((__BURST__) == FSMC_WRITE_BURST_ENABLE)) #define IS_FSMC_ACCESS_MODE(__MODE__) (((__MODE__) == FSMC_ACCESS_MODE_A) || \ ((__MODE__) == FSMC_ACCESS_MODE_B) || \ ((__MODE__) == FSMC_ACCESS_MODE_C) || \ ((__MODE__) == FSMC_ACCESS_MODE_D)) #define IS_FSMC_NAND_BANK(__BANK__) (((__BANK__) == FSMC_NAND_BANK2) || \ ((__BANK__) == FSMC_NAND_BANK3)) #define IS_FSMC_WAIT_FEATURE(__FEATURE__) (((__FEATURE__) == FSMC_NAND_PCC_WAIT_FEATURE_DISABLE) || \ ((__FEATURE__) == FSMC_NAND_PCC_WAIT_FEATURE_ENABLE)) #define IS_FSMC_NAND_MEMORY_WIDTH(__WIDTH__) (((__WIDTH__) == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) || \ ((__WIDTH__) == FSMC_NAND_PCC_MEM_BUS_WIDTH_16)) #define IS_FSMC_ECC_STATE(__STATE__) (((__STATE__) == FSMC_NAND_ECC_DISABLE) || \ ((__STATE__) == FSMC_NAND_ECC_ENABLE)) #define IS_FSMC_ECCPAGE_SIZE(__SIZE__) (((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_256BYTE) || \ ((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_512BYTE) || \ ((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_1024BYTE) || \ ((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_2048BYTE) || \ ((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_4096BYTE) || \ ((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_8192BYTE)) /** @defgroup FSMC_TCLR_Setup_Time FSMC_TCLR_Setup_Time * @{ */ #define IS_FSMC_TCLR_TIME(__TIME__) ((__TIME__) <= 255U) /** * @} */ /** @defgroup FSMC_TAR_Setup_Time FSMC_TAR_Setup_Time * @{ */ #define IS_FSMC_TAR_TIME(__TIME__) ((__TIME__) <= 255U) /** * @} */ /** @defgroup FSMC_Setup_Time FSMC_Setup_Time * @{ */ #define IS_FSMC_SETUP_TIME(__TIME__) ((__TIME__) <= 255U) /** * @} */ /** @defgroup FSMC_Wait_Setup_Time FSMC_Wait_Setup_Time * @{ */ #define IS_FSMC_WAIT_TIME(__TIME__) ((__TIME__) <= 255U) /** * @} */ /** @defgroup FSMC_Hold_Setup_Time FSMC_Hold_Setup_Time * @{ */ #define IS_FSMC_HOLD_TIME(__TIME__) ((__TIME__) <= 255U) /** * @} */ /** @defgroup FSMC_HiZ_Setup_Time FSMC_HiZ_Setup_Time * @{ */ #define IS_FSMC_HIZ_TIME(__TIME__) ((__TIME__) <= 255U) /** * @} */ /** @defgroup FSMC_NORSRAM_Device_Instance FSMC NOR/SRAM Device Instance * @{ */ #define IS_FSMC_NORSRAM_DEVICE(__INSTANCE__) ((__INSTANCE__) == FSMC_NORSRAM_DEVICE) /** * @} */ /** @defgroup FSMC_NORSRAM_EXTENDED_Device_Instance FSMC NOR/SRAM EXTENDED Device Instance * @{ */ #define IS_FSMC_NORSRAM_EXTENDED_DEVICE(__INSTANCE__) ((__INSTANCE__) == FSMC_NORSRAM_EXTENDED_DEVICE) /** * @} */ /** @defgroup FSMC_NAND_Device_Instance FSMC NAND Device Instance * @{ */ #define IS_FSMC_NAND_DEVICE(__INSTANCE__) ((__INSTANCE__) == FSMC_NAND_DEVICE) /** * @} */ /** @defgroup FSMC_PCCARD_Device_Instance FSMC PCCARD Device Instance * @{ */ #define IS_FSMC_PCCARD_DEVICE(__INSTANCE__) ((__INSTANCE__) == FSMC_PCCARD_DEVICE) /** * @} */ #define IS_FSMC_BURSTMODE(__STATE__) (((__STATE__) == FSMC_BURST_ACCESS_MODE_DISABLE) || \ ((__STATE__) == FSMC_BURST_ACCESS_MODE_ENABLE)) #define IS_FSMC_WAIT_POLARITY(__POLARITY__) (((__POLARITY__) == FSMC_WAIT_SIGNAL_POLARITY_LOW) || \ ((__POLARITY__) == FSMC_WAIT_SIGNAL_POLARITY_HIGH)) #define IS_FSMC_WRAP_MODE(__MODE__) (((__MODE__) == FSMC_WRAP_MODE_DISABLE) || \ ((__MODE__) == FSMC_WRAP_MODE_ENABLE)) #define IS_FSMC_WAIT_SIGNAL_ACTIVE(__ACTIVE__) (((__ACTIVE__) == FSMC_WAIT_TIMING_BEFORE_WS) || \ ((__ACTIVE__) == FSMC_WAIT_TIMING_DURING_WS)) #define IS_FSMC_WRITE_OPERATION(__OPERATION__) (((__OPERATION__) == FSMC_WRITE_OPERATION_DISABLE) || \ ((__OPERATION__) == FSMC_WRITE_OPERATION_ENABLE)) #define IS_FSMC_WAITE_SIGNAL(__SIGNAL__) (((__SIGNAL__) == FSMC_WAIT_SIGNAL_DISABLE) || \ ((__SIGNAL__) == FSMC_WAIT_SIGNAL_ENABLE)) #define IS_FSMC_EXTENDED_MODE(__MODE__) (((__MODE__) == FSMC_EXTENDED_MODE_DISABLE) || \ ((__MODE__) == FSMC_EXTENDED_MODE_ENABLE)) #define IS_FSMC_ASYNWAIT(__STATE__) (((__STATE__) == FSMC_ASYNCHRONOUS_WAIT_DISABLE) || \ ((__STATE__) == FSMC_ASYNCHRONOUS_WAIT_ENABLE)) #define IS_FSMC_CLK_DIV(__DIV__) (((__DIV__) > 1U) && ((__DIV__) <= 16U)) /** @defgroup FSMC_Data_Latency FSMC Data Latency * @{ */ #define IS_FSMC_DATA_LATENCY(__LATENCY__) (((__LATENCY__) > 1U) && ((__LATENCY__) <= 17U)) /** * @} */ /** @defgroup FSMC_Address_Setup_Time FSMC Address Setup Time * @{ */ #define IS_FSMC_ADDRESS_SETUP_TIME(__TIME__) ((__TIME__) <= 15U) /** * @} */ /** @defgroup FSMC_Address_Hold_Time FSMC Address Hold Time * @{ */ #define IS_FSMC_ADDRESS_HOLD_TIME(__TIME__) (((__TIME__) > 0U) && ((__TIME__) <= 15U)) /** * @} */ /** @defgroup FSMC_Data_Setup_Time FSMC Data Setup Time * @{ */ #define IS_FSMC_DATASETUP_TIME(__TIME__) (((__TIME__) > 0U) && ((__TIME__) <= 255U)) /** * @} */ /** @defgroup FSMC_Bus_Turn_around_Duration FSMC Bus Turn around Duration * @{ */ #define IS_FSMC_TURNAROUND_TIME(__TIME__) ((__TIME__) <= 15U) /** * @} */ /** * @} */ /** @defgroup FSMC_LL_Private_Constants FSMC Low Layer Private Constants * @{ */ /* ----------------------- FSMC registers bit mask --------------------------- */ #if (defined (STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG)) /* --- PCR Register ---*/ /* PCR register clear mask */ #define PCR_CLEAR_MASK ((uint32_t)(FSMC_PCRx_PWAITEN | FSMC_PCRx_PBKEN | \ FSMC_PCRx_PTYP | FSMC_PCRx_PWID | \ FSMC_PCRx_ECCEN | FSMC_PCRx_TCLR | \ FSMC_PCRx_TAR | FSMC_PCRx_ECCPS)) /* --- PMEM Register ---*/ /* PMEM register clear mask */ #define PMEM_CLEAR_MASK ((uint32_t)(FSMC_PMEMx_MEMSETx | FSMC_PMEMx_MEMWAITx |\ FSMC_PMEMx_MEMHOLDx | FSMC_PMEMx_MEMHIZx)) /* --- PATT Register ---*/ /* PATT register clear mask */ #define PATT_CLEAR_MASK ((uint32_t)(FSMC_PATTx_ATTSETx | FSMC_PATTx_ATTWAITx |\ FSMC_PATTx_ATTHOLDx | FSMC_PATTx_ATTHIZx)) #endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG */ /* --- BCR Register ---*/ /* BCR register clear mask */ #define BCR_CLEAR_MASK ((uint32_t)(FSMC_BCRx_FACCEN | FSMC_BCRx_MUXEN | \ FSMC_BCRx_MTYP | FSMC_BCRx_MWID | \ FSMC_BCRx_BURSTEN | FSMC_BCRx_WAITPOL | \ FSMC_BCRx_WRAPMOD | FSMC_BCRx_WAITCFG | \ FSMC_BCRx_WREN | FSMC_BCRx_WAITEN | \ FSMC_BCRx_EXTMOD | FSMC_BCRx_ASYNCWAIT | \ FSMC_BCRx_CBURSTRW)) /* --- BTR Register ---*/ /* BTR register clear mask */ #define BTR_CLEAR_MASK ((uint32_t)(FSMC_BTRx_ADDSET | FSMC_BTRx_ADDHLD |\ FSMC_BTRx_DATAST | FSMC_BTRx_BUSTURN |\ FSMC_BTRx_CLKDIV | FSMC_BTRx_DATLAT |\ FSMC_BTRx_ACCMOD)) /* --- BWTR Register ---*/ /* BWTR register clear mask */ #if (defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG)) #define BWTR_CLEAR_MASK ((uint32_t)(FSMC_BWTRx_ADDSET | FSMC_BWTRx_ADDHLD | \ FSMC_BWTRx_DATAST | FSMC_BWTRx_ACCMOD | \ FSMC_BWTRx_BUSTURN)) #else #define BWTR_CLEAR_MASK ((uint32_t)(FSMC_BWTRx_ADDSET | FSMC_BWTRx_ADDHLD | \ FSMC_BWTRx_DATAST | FSMC_BWTRx_ACCMOD | \ FSMC_BWTRx_CLKDIV | FSMC_BWTRx_DATLAT)) #endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG */ /* --- PIO4 Register ---*/ /* PIO4 register clear mask */ #define PIO4_CLEAR_MASK ((uint32_t)(FSMC_PIO4_IOSET4 | FSMC_PIO4_IOWAIT4 | \ FSMC_PIO4_IOHOLD4 | FSMC_PIO4_IOHIZ4)) /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup FSMC_LL_Exported_Functions * @{ */ /** @addtogroup FSMC_NORSRAM * @{ */ /** @addtogroup FSMC_NORSRAM_Group1 * @{ */ /* FSMC_NORSRAM Controller functions ******************************************/ /* Initialization/de-initialization functions */ HAL_StatusTypeDef FSMC_NORSRAM_Init(FSMC_NORSRAM_TypeDef *Device, FSMC_NORSRAM_InitTypeDef *Init); HAL_StatusTypeDef FSMC_NORSRAM_Timing_Init(FSMC_NORSRAM_TypeDef *Device, FSMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank); HAL_StatusTypeDef FSMC_NORSRAM_Extended_Timing_Init(FSMC_NORSRAM_EXTENDED_TypeDef *Device, FSMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank, uint32_t ExtendedMode); HAL_StatusTypeDef FSMC_NORSRAM_DeInit(FSMC_NORSRAM_TypeDef *Device, FSMC_NORSRAM_EXTENDED_TypeDef *ExDevice, uint32_t Bank); /** * @} */ /** @addtogroup FSMC_NORSRAM_Group2 * @{ */ /* FSMC_NORSRAM Control functions */ HAL_StatusTypeDef FSMC_NORSRAM_WriteOperation_Enable(FSMC_NORSRAM_TypeDef *Device, uint32_t Bank); HAL_StatusTypeDef FSMC_NORSRAM_WriteOperation_Disable(FSMC_NORSRAM_TypeDef *Device, uint32_t Bank); /** * @} */ /** * @} */ #if (defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG)) /** @addtogroup FSMC_NAND * @{ */ /* FSMC_NAND Controller functions **********************************************/ /* Initialization/de-initialization functions */ /** @addtogroup FSMC_NAND_Exported_Functions_Group1 * @{ */ HAL_StatusTypeDef FSMC_NAND_Init(FSMC_NAND_TypeDef *Device, FSMC_NAND_InitTypeDef *Init); HAL_StatusTypeDef FSMC_NAND_CommonSpace_Timing_Init(FSMC_NAND_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank); HAL_StatusTypeDef FSMC_NAND_AttributeSpace_Timing_Init(FSMC_NAND_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank); HAL_StatusTypeDef FSMC_NAND_DeInit(FSMC_NAND_TypeDef *Device, uint32_t Bank); /** * @} */ /* FSMC_NAND Control functions */ /** @addtogroup FSMC_NAND_Exported_Functions_Group2 * @{ */ HAL_StatusTypeDef FSMC_NAND_ECC_Enable(FSMC_NAND_TypeDef *Device, uint32_t Bank); HAL_StatusTypeDef FSMC_NAND_ECC_Disable(FSMC_NAND_TypeDef *Device, uint32_t Bank); HAL_StatusTypeDef FSMC_NAND_GetECC(FSMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank, uint32_t Timeout); /** * @} */ /** * @} */ /** @addtogroup FSMC_PCCARD * @{ */ /* FSMC_PCCARD Controller functions ********************************************/ /* Initialization/de-initialization functions */ /** @addtogroup FSMC_PCCARD_Exported_Functions_Group1 * @{ */ HAL_StatusTypeDef FSMC_PCCARD_Init(FSMC_PCCARD_TypeDef *Device, FSMC_PCCARD_InitTypeDef *Init); HAL_StatusTypeDef FSMC_PCCARD_CommonSpace_Timing_Init(FSMC_PCCARD_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing); HAL_StatusTypeDef FSMC_PCCARD_AttributeSpace_Timing_Init(FSMC_PCCARD_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing); HAL_StatusTypeDef FSMC_PCCARD_IOSpace_Timing_Init(FSMC_PCCARD_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing); HAL_StatusTypeDef FSMC_PCCARD_DeInit(FSMC_PCCARD_TypeDef *Device); /** * @} */ /** * @} */ #endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG */ /** * @} */ /** * @} */ #endif /* FSMC_BANK1 */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __STM32F1xx_LL_FSMC_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 帮我提取一下代码中的FSMC配置信息,在stm32cubemx中是什么样的配置
最新发布
09-07
/** * @file ADC/ADC_Temperature/main.h * @brief Header for main.c module * @author ChipSea MCU Group * @version V1.0.0 * @date * @copyright CHIPSEA TECHNOLOGIES (SHENZHEN) CORP. * @note * <h2><center>© COPYRIGHT 2022 ChipSea</center></h2> * * * @verbatim ----------------------- How to used this project--------------------------- * @par Example Description This example shows how to configure ADC for temperature detect. User should combine manual to learn how to calculate actual voltage. - Test steps a. Rebuild the project and load the image into target memory. b. Connect harware to the target board. c. Run the example, SDADC start sample every 1000ms. * @endverbatim * */ /***************************************************************************** * @includes *****************************************************************************/ #include "main.h" /***************************************************************************** * @definitions *****************************************************************************/ #define T0K_FLASH_BASE 0x1FFFFC34 #define DATAT0_HIGH_FLASH_BASE 0x1FFFFC3C #define DATAT0_LOW_FLASH_BASE 0x1FFFFC38 /***************************************************************************** * @variables *****************************************************************************/ extern uint32_t SystemCoreClock; static volatile uint32_t timing_delay; volatile uint32_t data_symbol = 0; /***************************************************************************** * @functions *****************************************************************************/ void delay(volatile uint32_t value); uint32_t adc_data_convert(uint32_t data); /**@brief Main program. * * @param[in] None. * * @return None. */ int main(void) { uint32_t data_T0 = 0; uint32_t T0_K = 0; uint32_t adc_data = 0; double adc_temp = 0; adc_config_t adc_config; pga_config_t pga_config; vref_config_t vref_config; /* Init USART1 */ cs_eval_com_init(); printf("ADC temperature example!\r\n"); /* Interrupt every 1ms */ SysTick_Config(SystemCoreClock / 1000); /* Clock enable */ __RCU_AHB_CLK_ENABLE(RCU_AHB_PERI_GPIOA); __RCU_APB1_CLK_ENABLE(RCU_APB1_PERI_ADADC); __RCU_FUNC_ENABLE(LRC2_CLK); /* adc clock = LRC2(1.024MHz) */ rcu_adcclk_config(RCU_ADCLK_CFG_LRC2); if(rcu_lrc2_stabilization_wait() == ERROR) { printf("LRC2 not ready\r\n"); /* Stop here */ while(1); } else { printf("LRC2 ready\r\n"); } adc_def_init(ADC1); /* Step1:Inner-vref must soft start */ adc_vref_soft_start(ADC1); /* Step2:Config AD-ADC */ adc_config_struct_init(&adc_config); adc_config.abandont_num = ADC_ABANDONT_DATA_4; adc_config.average_num = ADC_AVERAGE_NUM_16; adc_config.convert_mode = ADC_SINGLE_CONVERT_MODE; adc_config.data_rate = ADC_DATARATE_MODE_7; adc_config.gain_select = ADC_GAIN_2; adc_config.ovrwr_mode = ADC_DATA_OVER_WRITE_NONE; adc_config.power_mode = ADC_HIGH_POWER_MODE; adc_config.rst_num = ADC_RST_CYCLE_4; adc_config.setup_time = ADC_SETUP_TIME_CYCLE_2048; adc_init(ADC1, &adc_config); /* Step3:Config PGA */ pga_config.din_select = PGA_PMOS; pga_config.pga1_enable = DISABLE; pga_config.pga_chop = PGA_CHOP_DIV_256; pga_config.pga_gain = ADC_PGA_GAIN_1; adc_pga_init(&pga_config); /* Step4:Config VREF */ vref_config.buffer_enable = ENABLE; vref_config.driver = ADC_VREF_DRV_MAX_5MA; vref_config.ref_select = ADC_REF_SELECT_INNER_2P048V; vref_config.vref_enable = ENABLE; adc_vref_init(&vref_config); /* Step5:Filter select */ adc_digital_filter_select(ADC1, ADC_FILTER_LOW_LATENCY); /* Step6:trigger config -- soft */ adc_trigger_config(ADC1, ADC_TRIGGER_MODE_SOFT, ADC_TRIGGER_SRC_RTC); adc_chop_freq_set(ADC1,ADC_CHOP_DIV_256); adc_channel_config(ADC1, ADC_INPUT_CHANNEL_8, ADC_INPUT_CHANNEL_8); /* FLASH data code handle */ T0_K = *(__IO uint32_t *)T0K_FLASH_BASE; T0_K = (T0_K & 0x000000FF) | ((T0_K & 0x00FF0000)>>8); T0_K = (T0_K - 27315); data_T0 = (((*(__IO uint32_t *)DATAT0_HIGH_FLASH_BASE) & 0x000000FF) <<16) | \ ((*(__IO uint32_t *)DATAT0_LOW_FLASH_BASE) & 0x000000FF) | \ (((*(__IO uint32_t *)DATAT0_LOW_FLASH_BASE) & 0x00FF0000 )>>8); while(1) { adc_conversion_start(ADC1); while(!__ADC_FLAG_STATUS_GET(ADC1, ADC_FLAG_DATA_EOCH)); adc_data = adc_data_convert(__ADC_CONV_VALUE_GET(ADC1)); printf("ADC temp testúAdc value is %06x\r\n",adc_data); if(adc_data >= data_T0) { adc_temp = (double)(adc_data - data_T0) * 2048 / 8388608 + (double)T0_K/100; } else { adc_temp = (double)T0_K/100 - (double)(data_T0 - adc_data) * 2048 / 8388608; } printf("tempertureúAdc value is %f\r\n",adc_temp); printf("\r\n\n\n"); delay(1000); } } uint32_t adc_data_convert(uint32_t adc_data) { if(adc_data & 0x800000) { adc_data = (~(adc_data & 0xFFFFFF))+1; adc_data &= 0x00FFFFFF; } else { adc_data &= 0x00FFFFFF; } return adc_data; } /**@brief Inserts a delay time. * * @param[in] nTime: specifies the delay time length, in milliseconds. * * @return None. */ void delay(volatile uint32_t value) { timing_delay = value; while(timing_delay != 0); } /**@brief Decrements the timing_delay variable. * * @param[in] None. * * @return None. */ void timing_delay_decrement(void) { if (timing_delay != 0x00) { timing_delay--; } } #ifdef USE_FULL_ASSERT /**@brief Report the assert error. * * @param[in] file: pointer to the source file name. * * @param[in] line: error line source number. * * @return None. */ void assert_failed(uint8_t* file, uint32_t line) { while(1); } #endif
07-30
/** DSI Functional Configuration Selection This definition is used in dsi_set_config()/dsi_get_config() specify which of the dsi function is selected to assign new configurations. */ typedef enum { DSI_CONFIG_ID_MODE, ///< Configure DSI mode ///< @note for DSI_CFG_MODE_SEL ///< Context can be any of: ///< - @b DSI_MODE_MANUAL_MODE : Manual Commands Only: Send CMD(s) and auto clear DSI_TX_EN ///< - @b DSI_MODE_AUTO_MODE1 : Send single frame only and auto clear DSI_TX_EN at frame end (No commands) ///< - @b DSI_MODE_AUTO_MODE2 : Auto Mode 2: FRM1 + FRM2 + ... ///< - @b DSI_MODE_AUTO_MODE3 : Auto Mode 3: CMD(s) + FRM1 + CMD(s) + FRM2 + ... DSI_CONFIG_ID_PIXEL_FMT, ///< Configure DSI pinxel format. Use DSI_PIXEL_RGB_888/DSI_PIXEL_RGB_565/DSI_PIXEL_RGB_666_PACKETED/DSI_PIXEL_RGB_666_LOOSELY DSI_CONFIG_ID_PIXPKT_MODE, ///< Configure DSI pinxel mode. DSI_CONFIG_ID_VDOPKT_TYPE, ///< Configure DSI video packet type. DSI_CONFIG_ID_ECC_CHK_EN, ///< Configure DSI Ecc check enable/disable. DSI_CONFIG_ID_FRMEND_BTA_EN, ///< Configure DSI frameend BTA enable/disable. DSI_CONFIG_ID_EOT_PKT_EN, ///< Configure DSI EOT packet enable/disable DSI_CONFIG_ID_BLANK_CTRL, ///< Configure DSI blank control DSI_CONFIG_ID_INTER_PKT_LP, ///< Configure DSI inter-packet enter LP or not. DSI_CONFIG_ID_CLK_LP_CTRL, ///< Configure DSI clock enter LP or not. DSI_CONFIG_ID_SYNC_EN, ///< Configure DSI sync enable/disable. DSI_CONFIG_ID_SYNC_SRC, ///< Configure DSI sync source. DSI_CONFIG_ID_SYNC_WITH_SETTEON, ///< Configure DSI sync with set te on. DSI_CONFIG_ID_SYNC_WITH_SETTEON_RTY, ///< Configure DSI sync with set te on retry. DSI_CONFIG_ID_RGB_SWAP, ///< Configure DSI RGB swap DSI_CONFIG_ID_RGB_BITFLIP, ///< Configure DSI RGB bit swap DSI_CONFIG_ID_SYNC_WITH_SETTEON_RTY_TWICEBTA, ///< Configure DSI sync with set te on retry and BTA twice. DSI_CONFIG_ID_DATALANE_NO, ///< Configure DSI data lane number. DSI_CONFIG_ID_SRC, ///< Configure DSI souce from IDE or IDE2 DSI_CONFIG_ID_PIXPKT_PH_DT, ///< Configure DSI pixel Packet header DataType. DSI_CONFIG_ID_PIXPKT_PH_VC, ///< Configure DSI pixel Packet header VirtualChannel. DSI_CONFIG_ID_DCS_CT0, ///< Configure DSI DSC command, this field would be inserted in front of the first pixel packet. DSI_CONFIG_ID_DCS_CT1, ///< Configure DSI DSC command, this field would be inserted in front of the pixel packet except the first pixel packet. DSI_CONFIG_ID_SYNCEVT_SLICE_NO, ///< Configure DSI sync event slice number. DSI_CONFIG_ID_SYNCEVT_NULL_LEN, ///< Configure DSI sync even null length. (Byte count) DSI_CONFIG_ID_VSA, ///< Configure DSI vertical sync active timing. DSI_CONFIG_ID_VTOTAL, ///< Configure DSI vertical total timing. DSI_CONFIG_ID_VVALID_START, ///< Configure DSI vertical valid start timing. DSI_CONFIG_ID_VVALID_END, ///< Configure DSI vertical valid end timing. DSI_CONFIG_ID_HSA, ///< Configure DSI horizontal sync active timing. DSI_CONFIG_ID_BLLP, ///< Configure DSI BLLP period, this period can trasmit HS packets or entering LP11. DSI_CONFIG_ID_HBP, ///< Configure DSI horizontal back porch period. DSI_CONFIG_ID_HFP, ///< Configure DSI horizontal front porch period. DSI_CONFIG_ID_HACT, ///< Configure DSI horizontal active period. DSI_CONFIG_ID_TLPX, ///< Configure DSI LTPX timing. DSI_CONFIG_ID_BTA_TA_GO, ///< Configure DSI TA_GO timing. DSI_CONFIG_ID_BTA_TA_SURE, ///< Configure DSI TA_SURE timing. DSI_CONFIG_ID_BTA_TA_GET, ///< Configure DSI TA_GET timing. DSI_CONFIG_ID_THS_PREPARE, ///< Configure DSI THS_PREPARE timing. DSI_CONFIG_ID_THS_ZERO, ///< Configure DSI THS_ZERO timing. DSI_CONFIG_ID_THS_TRAIL, ///< Configure DSI THS_TRAIL timing. DSI_CONFIG_ID_THS_EXIT, ///< Configure DSI THS_EXIT timing. DSI_CONFIG_ID_TWAKEUP, ///< Configure DSI wakeup timing. DSI_CONFIG_ID_TCLK_PREPARE, ///< Configure DSI TCLK_PREPARE timing. DSI_CONFIG_ID_TCLK_ZERO, ///< Configure DSI TCLK_ZERO timing. DSI_CONFIG_ID_TCLK_POST, ///< Configure DSI TCLK_POST timing. DSI_CONFIG_ID_TCLK_PRE, ///< Configure DSI TCLK_PRE timing. DSI_CONFIG_ID_TCLK_TRAIL, ///< Configure DSI TCLK_TRAIL timing. DSI_CONFIG_ID_BTA_TMOUT_VAL, ///< Configure DSI BTA timeout. DSI_CONFIG_ID_BTA_HANDSK_TMOUT_VAL, ///< Configure DSI BTA handshake timeout. DSI_CONFIG_ID_SYNC_POL, ///< Configure DSI SYNC polarity. DSI_CONFIG_ID_SYNC_SEL, ///< Configure DSI SYNC faster or slower than peripheral selection. DSI_CONFIG_ID_SYNC_DLY_CNT, ///< Configure DSI SYNC delay count. DSI_CONFIG_ID_TE_BTA_INTERVAL, ///< Configure DSI TE BAT issue interval. DSI_CONFIG_ID_PHY_DRVING, ///< Configure DSI PHY driving DSI_CONFIG_ID_CLK_PHASE_OFS, ///< Configure DSI PHY clock phase offset. DSI_CONFIG_ID_DAT0_PHASE_OFS, ///< Configure DSI PHY data0 phase offset. DSI_CONFIG_ID_DAT1_PHASE_OFS, ///< Configure DSI PHY data1 phase offset. DSI_CONFIG_ID_DAT2_PHASE_OFS, ///< Configure DSI PHY data2 phase offset. DSI_CONFIG_ID_DAT3_PHASE_OFS, ///< Configure DSI PHY data3 phase offset. DSI_CONFIG_ID_PHASE_DELAY_ENABLE_OFS, ///< Configure DSI PHY phase delay enable. //DSI_CFG_ID_FREQ DSI_CONFIG_ID_FREQ, ///< DSI module target clock (Unit: Hz) DSI_CONFIG_ID_LPFREQ, ///< DSI module LP clock (Unit: Hz) DSI_CONFIG_ID_IDEHVALID, ///< DSI module of IDE HVALID setting DSI_CONFIG_ID_LANSEL_D0, ///< Configure DSI DAT0 Lane mapping DSI_CONFIG_ID_LANSEL_D1, ///< Configure DSI DAT1 Lane mapping DSI_CONFIG_ID_LANSEL_D2, ///< Configure DSI DAT2 Lane mapping DSI_CONFIG_ID_LANSEL_D3, ///< Configure DSI DAT3 Lane mapping DSI_CONFIG_ID_PHY_LP_RX_DAT0,///< Configure DSI LP RX DAT0 enable/disable DSI_CONFIG_ID_BTA_VALUE, ///< Read back SRAM value DSI_CONFIG_ID_CHIP_VER, ///< Get DSI chip version ENUM_DUMMY4WORD(DSI_CONFIG_ID) } DSI_CONFIG_ID;分析每个枚举值的用途
06-06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值