[注意]未做的题(强连通分量)

本文汇总了多个在线评测平台上的强连通分量相关题目,包括POJ 3648、POJ 2749、BZOJ 1823及HDU 1814等,旨在为读者提供算法题目的解析与实践案例。

强连通分量:

POJ   3648

POJ   2749

BZOJ  1823

HDU   1814

 

 

# P2341 [USACO03FALL / HAOI2006] 受欢迎的牛 G ## 目背景 本测试数据已修复。 ## 目描述 每头奶牛都梦想成为牛棚里的明星。被所有奶牛喜欢的奶牛就是一头明星奶牛。所有奶牛都是自恋狂,每头奶牛总是喜欢自己的。奶牛之间的“喜欢”是可以传递的——如果 $A$ 喜欢 $B$,$B$ 喜欢 $C$,那么 $A$ 也喜欢 $C$。牛栏里共有 $N$ 头奶牛,给定一些奶牛之间的爱慕关系,请你算出有多少头奶牛可以当明星。 ## 输入格式 第一行:两个用空格分开的整数:$N$ $M$。 接下来 $M$ 行:每行两个用空格分开的整数:$A$ $B$,表示 $A$ 喜欢 $B$。 ## 输出格式 一行单独一个整数,表示明星奶牛的数量。 ## 输入输出样例 #1 ### 输入 #1 ``` 3 3 1 2 2 1 2 3 ``` ### 输出 #1 ``` 1 ``` ## 说明/提示 只有 $3$ 号奶牛可以明星。 【数据范围】 对于 $10\%$ 的数据,$N\le20$,$M\le50$。 对于 $30\%$ 的数据,$N\le10^3$,$M\le2\times 10^4$。 对于 $70\%$ 的数据,$N\le5\times 10^3$,$M\le5\times 10^4$。 对于 $100\%$ 的数据,$1\le N\le10^4$,$1\le M\le5\times 10^4$。 c++,不要vector,变量名小写5字符以内,需要函数:void Tarjan(int u) { dfn[u] = low[u] = ++num; //初始化结点u的dfnlow值 st[++top] = u; //将结点u压入栈中 vis[u] = 1; //标记u在栈中 for (int i = head[u]; i; i = e[i].nxt) { //枚举u的所有出 int v = e[i].to; if (!dfn[v]) { //结点v被访问过,说明是树枝 Tarjan(v); low[u] = min(low[u], low[v]); } else if (vis[v]) //v在栈中,是返祖 low[u] = min(low[u], dfn[v]); // } int tmp = 0; if (low[u] == dfn[u]) { //结点u是该强连通分量的根 ++cnt; //强连通分量数量加一 do { //将当前结点前所有还在栈空间内的结点都归为当前强连通分量 tmp = st[top--]; vis[tmp] = 0; color[tmp] = cnt; //将同一个强连通分量内的点均标记为相同编号,也可理解为染色 } while(tmp != u); } } set<pair<int, int> > mark;//记录是否连接过 void solution() { //通过tarjan算法将所有强连通分量分配编号 for (int i = 1; i <= n; i++) if (!dfn[i]) Tarjan(i); //遍历所有连,判断相邻两个结点是否所属同一强连通分量 for (int u = 1, v; u <= n; u++) { for (int i = head[u]; i; i = e[i].nxt) { v = e[j].to; //当相邻两个结点不属于同一强连通分量,则以强连通分量编号为点建 if (color[u] != color[v] && mark[{color[u], color[v]}].find != mark.end()) { link(color[u], color[v]); mark.insert({color[u], color[v]}); } } } }
最新发布
08-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值