from mxnet import autograd,nd
num_inputs = 2
num_examples = 1000
true_w = [2,-3.4]
true_b = 4.2
features = nd.random.normal(scale=1,shape=(num_examples,num_inputs))
labels = true_w[0]*features[:,0]+true_w[1]*features[:,1]+true_b
labels += nd.random.normal(scale=0.01,shape=labels.shape)
from mxnet.gluon import data as gdata
batch_size = 10
dataset = gdata.ArrayDataset(features,labels)
data_iter = gdata.DataLoader(dataset,batch_size,shuffle=True)
from mxnet.gluon import nn
net = nn.Sequential()
net.add(nn.Dense(1))
from mxnet import init
net.initialize(init.Normal(sigma=0.01))
from mxnet.gluon import loss as gloss
loss = gloss.L2Loss()
from mxnet import gluon
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.03})
num_epochs = 3
for epoch in range(1,num_epochs+1):
for X,y in data_iter:
with autograd.record():
l = loss(net(X),y)
l.backward()
trainer.step(batch_size)
l=loss(net(features),labels)
print('epoch %d,loss %f'%(epoch,l.mean().asnumpy()))
epoch 1,loss 0.039983
epoch 2,loss 0.000155
epoch 3,loss 0.000047
dense = net[0]
true_w,dense.weight.data()
true_b,dense.bias.data()
(4.2,
[4.199878]
<NDArray 1 @cpu(0)>)