####极大似然估计####
#一维参数估计
optimize(f, interval, ..., lower = min(interval), upper = max(interval),
maximum = FALSE,
tol = .Machine$double.eps^0.25)
#f是似然函数,interval是参数的范围,lower/upper是参数的下界/上界,
#maximum = FALSE是求最小值,求极大似然估计时设置maximum = T
#tol = .Machine$double.eps^0.25为求值的精确度
#多维参数估计
nlm(f, p, ..., hessian = FALSE, typsize = rep(1, length(p)),
fscale = 1, print.level = 0, ndigit = 12, gradtol = 1e-6,
stepmax = max(1000 * sqrt(sum((p/typsize)^2)), 1000),
steptol = 1e-6, iterlim = 100, check.analyticals = TRUE)
optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN",
"Brent"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)