Action Recognition by Dense Trajectories

本文介绍了一种基于密集光流场的轨迹跟踪方法,通过在每一帧中密集采样点并跟踪这些点的位移信息来获取更稳定的轨迹。这种方法不仅易于扩展跟踪点的数量,而且由于在密集光流场中施加了全局平滑约束,使得轨迹更为鲁棒。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

INTRODUCTION

in general,trajectory features is extracted using the KLT tracker or matching SIFT descriptors between frames.
however,extracted trajectores is various depend on the methods, We sample dense points from each frame and track them based on displacement information from a dense optical flow field.

The trajectories are obtained by tracking ensely sampled points using optical flow fields. The number
of tracked points can be scaled up easily, as dense flow
fields are already computed. Furthermore, global smoothness
constraints are imposed among the points in dense optical
flow fields, which results in more robust trajectories than
tracking or matching points separately

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值