Day1
O( n 3 n^3 n3)
#include<cstdio>
#include<cmath>
using namespace std;
#define MAX_N 110
int n,a[MAX_N];
int max_length =0;
void solve()
{
for(int i = 0;i < n;i++)
for(int j = i+1;j<n;j++)
for(int k = j+1;k<n;k++)
{
int length = a[i] + a[j] + a[k];
int max_a = max(a[i],max(a[j],a[k]));
int residue = length - max_a;
if(residue > max_a && length > max_length)
{
max_length = length;
}
}
}
int main()
{
scanf("%d",&n);
for(int i = 0;i<n;i++)
{
scanf("%d",&a[i]);
}
solve();
printf("%d",max_length);
system("pause");
return 0;
}
O( n ∗ l o g n n*logn n∗logn)
最优解必定是排完序后连续的三个数
反正法:
- 假设 a , b , c a,b,c a,b,c是最优解,存在 a < a . < b < b . < c a<a^.<b<b^.<c a<a.<b<b.<c
- 因为 a + b > c a+b>c a+b>c,所以一定有 a . + b > c a^.+b>c a.+b>c,因此 a . , b , c a^.,b,c a.,b,c优于 a , b , c a,b,c a,b,c,矛盾,故不存在 a . a^. a.
- b . b^. b.同理不存在
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define MAX_N 110
int n,a[MAX_N];
int max_length =0;
void solve()
{
for(int i = n-1;i >=2;i--)
{
int length = a[i] + a[i-1] + a[i-2];
int residue = length - a[i];
if(residue > a[i] && length > max_length)
{
max_length = length;
}
}
}
int main()
{
scanf("%d",&n);
for(int i = 0;i<n;i++)
{
scanf("%d",&a[i]);
}
sort(a,a+n);
solve();
printf("%d",max_length);
system("pause");
return 0;
}