MapReduce简介
- MapReduce是一种分布式计算模型,是Google提出的,主要用于搜索领域,解决海量数据的计算问题。
- MR有两个阶段组成:Map和Reduce,用户只需实现map()和reduce()两个函数,即可实现分布式计算。
MapReduce执行流程
MapReduce原理
MapReduce的执行步骤:
1、Map任务处理
1.1 读取HDFS中的文件。每一行解析成一个<k,v>。每一个键值对调用一次map函数。 <0,hello you> <10,hello me>
1.2 覆盖map(),接收1.1产生的<k,v>,进行处理,转换为新的<k,v>输出。 <hello,1> <you,1> <hello,1> <me,1>
1.3 对1.2输出的<k,v>进行分区。默认分为一个区。详见《Partitioner》
1.4 对不同分区中的数据进行排序(按照k)、分组。分组指的是相同key的value放到一个集合中。 排序后:<hello,1> <hello,1> <me,1> <you,1> 分组后:<hello,{1,1}><me,{1}><you,{1}>
1.5 (可选)对分组后的数据进行归约。详见《Combiner》
2、Reduce任务处理
2.1 多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上。(shuffle)详见《shuffle过程分析》
2.2 对多个map的输出进行合并、排序。覆盖reduce函数,接收的是分组后的数据,实现自己的业务逻辑, <hello,2> <me,1> <you,1>
处理后,产生新的<k,v>输出。
2.3 对reduce输出的<k,v>写到HDFS中。
Java代码实现
注:要导入org.apache.hadoop.fs.FileUtil.java。
1、先创建一个hello文件,上传到HDFS中
2、然后再编写代码,实现文件中的单词个数统计(代码中被注释掉的代码,是可以省略的,不省略也行)
package mapreduce;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class WordCountApp {
static final String INPUT_PATH = "hdfs://chaoren:9000/hello";
static final String OUT_PATH = "hdfs://chaoren:9000/out";
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf);
Path outPath = new Path(OUT_PATH);
if (fileSystem.exists(outPath)) {
fileSystem.delete(outPath, true);
}
Job job = new Job(conf, WordCountApp.class.getSimpleName());
// 1.1指定读取的文件位于哪里
FileInputFormat.setInputPaths(job, INPUT_PATH);
// 指定如何对输入的文件进行格式化,把输入文件每一行解析成键值对
//job.setInputFormatClass(TextInputFormat.class);
// 1.2指定自定义的map类
job.setMapperClass(MyMapper.class);
// map输出的<k,v>类型。如果<k3,v3>的类型与<k2,v2>类型一致,则可以省略
//job.setOutputKeyClass(Text.class);
//job.setOutputValueClass(LongWritable.class);
// 1.3分区
//job.setPartitionerClass(org.apache.hadoop.mapreduce.lib.partition.HashPartitioner.class);
// 有一个reduce任务运行
//job.setNumReduceTasks(1);
// 1.4排序、分组
// 1.5归约
// 2.2指定自定义reduce类
job.setReducerClass(MyReducer.class);
// 指定reduce的输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
// 2.3指定写出到哪里
FileOutputFormat.setOutputPath(job, outPath);
// 指定输出文件的格式化类
//job.setOutputFormatClass(TextOutputFormat.class);
// 把job提交给jobtracker运行
job.waitForCompletion(true);
}
/**
*
* KEYIN 即K1 表示行的偏移量
* VALUEIN 即V1 表示行文本内容
* KEYOUT 即K2 表示行中出现的单词
* VALUEOUT 即V2 表示行中出现的单词的次数,固定值1
*
*/
static class MyMapper extends
Mapper<LongWritable, Text, Text, LongWritable> {
protected void map(LongWritable k1, Text v1, Context context)
throws java.io.IOException, InterruptedException {
String[] splited = v1.toString().split("\t");
for (String word : splited) {
context.write(new Text(word), new LongWritable(1));
}
};
}
/**
* KEYIN 即K2 表示行中出现的单词
* VALUEIN 即V2 表示出现的单词的次数
* KEYOUT 即K3 表示行中出现的不同单词
* VALUEOUT 即V3 表示行中出现的不同单词的总次数
*/
static class MyReducer extends
Reducer<Text, LongWritable, Text, LongWritable> {
protected void reduce(Text k2, java.lang.Iterable<LongWritable> v2s,
Context ctx) throws java.io.IOException,
InterruptedException {
long times = 0L;
for (LongWritable count : v2s) {
times += count.get();
}
ctx.write(k2, new LongWritable(times));
};
}
}
3、运行成功后,可以在Linux中查看操作的结果