模型部署与导出:从PyTorch到生产环境
1. 模型部署到生产环境
1.1 基础服务器代码
首先,我们有一段基础的服务器代码,用于加载模型并进行推理:
import sys
import torch
import numpy as np
from flask import Flask, request, jsonify
app = Flask(__name__)
model = ... # 这里需要定义模型
model.load_state_dict(torch.load(sys.argv[1], map_location='cpu')['model_state'])
model.eval()
def run_inference(in_tensor):
with torch.no_grad():
# LunaModel takes a batch and outputs a tuple (scores, probs)
out_tensor = model(in_tensor.unsqueeze(0))[1].squeeze(0)
probs = out_tensor.tolist()
out = {'prob_malignant': probs[1]}
return out
@app.route("/predict", methods=["POST"])
def predict():
meta = json.load(request.files['meta'])
blob = request.files['b
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



