codeforces 785 E. Anton and Permutation

本文介绍了一个关于排列及其逆序对计数的问题,通过分块技术实现高效查询与更新操作。


E. Anton and Permutation
time limit per test
4 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Anton likes permutations, especially he likes to permute their elements. Note that a permutation of n elements is a sequence of numbers{a1, a2, ..., an}, in which every number from 1 to n appears exactly once.

One day Anton got a new permutation and started to play with it. He does the following operation q times: he takes two elements of the permutation and swaps these elements. After each operation he asks his friend Vanya, how many inversions there are in the new permutation. The number of inversions in a permutation is the number of distinct pairs (i, j) such that 1 ≤ i < j ≤ n and ai > aj.

Vanya is tired of answering Anton's silly questions. So he asked you to write a program that would answer these questions instead of him.

Initially Anton's permutation was {1, 2, ..., n}, that is ai = i for all i such that 1 ≤ i ≤ n.

Input

The first line of the input contains two integers n and q (1 ≤ n ≤ 200 000, 1 ≤ q ≤ 50 000) — the length of the permutation and the number of operations that Anton does.

Each of the following q lines of the input contains two integers li and ri (1 ≤ li, ri ≤ n) — the indices of elements that Anton swaps during the i-th operation. Note that indices of elements that Anton swaps during the i-th operation can coincide. Elements in the permutation are numbered starting with one.

Output

Output q lines. The i-th line of the output is the number of inversions in the Anton's permutation after the i-th operation.

Examples
input
5 4
4 5
2 4
2 5
2 2
output
1
4
3
3
input
2 1
2 1
output
1
input
6 7
1 4
3 5
2 3
3 3
3 6
2 1
5 1
output
5
6
7
7
10
11
8
Note

Consider the first sample.

After the first Anton's operation the permutation will be {1, 2, 3, 5, 4}. There is only one inversion in it: (4, 5).

After the second Anton's operation the permutation will be {1, 5, 3, 2, 4}. There are four inversions: (2, 3)(2, 4)(2, 5) and (3, 4).

After the third Anton's operation the permutation will be {1, 4, 3, 2, 5}. There are three inversions: (2, 3)(2, 4) and (3, 4).

After the fourth Anton's operation the permutation doesn't change, so there are still three inversions.

题意:给你一个初始升序序列1~n,q次交换,求每次交换后的逆序对数有多少。

思路:以前就听过分块这种数据结构,不过一直没写过。这回遇见了就查一下别人怎么写的然后再自己写一遍。。。思路就是把n个数分成sqrt(n)块。。然后每一块都是升序的。那么查找的时候可以用二分,每一块查找的复杂度是log(sqrt(n))。插入的复杂度一样。那么这道题就很容易解决了。下面给代码:

#include<iostream>  
#include<cmath>  
#include<queue>  
#include<cstdio>  
#include<queue>  
#include<algorithm>  
#include<cstring>  
#include<string>  
#include<utility>
#include<map>
#include<vector>
#define maxn 200005 
#define inf 0x3f3f3f3f  
using namespace std;
typedef long long LL;
const double eps = 1e-8;
vector<int>v[maxn];
int Left[maxn], Right[maxn], belong[maxn], a[maxn];
void build(int n){
	int num = sqrt(n);
	int block = n / num;
	if (n%num)
		block++;
	for (int i = 1; i <= block; i++){
		Left[i] = (i - 1)*num + 1;
		Right[i] = i*num;
	}
	for (int i = 1; i <= n; i++){
		belong[i] = (i - 1) / num + 1;
	}
	for (int i = 1; i <= block; i++){
		for (int j = Left[i]; j <= Right[i]; j++){
			v[i].push_back(j);
		}
	}
}
LL query(int l, int r, int now){
	if (l > r)
		return 0;
	LL ans = 0;
	if (belong[l] == belong[r]){
		for (int i = l; i <= r; i++){
			if (a[i] < now)
				ans++;
		}
	}
	else{
		for (int i = l; i <= Right[belong[l]]; i++){
			if (a[i] < now)
				ans++;
		}
		for (int i = belong[l] + 1; i < belong[r]; i++){
			int pos = upper_bound(v[i].begin(), v[i].end(), now) - v[i].begin();
			ans += pos;
		}
		for (int i = Left[belong[r]]; i <= r; i++){
			if (a[i] < now)
				ans++;
		}
	}
	return ans;
}
void update(int x, int y){
	int id = belong[x];
	v[id].erase(lower_bound(v[id].begin(), v[id].end(), a[x]));
	v[id].insert(upper_bound(v[id].begin(), v[id].end(), a[y]), a[y]);
	id = belong[y];
	v[id].erase(lower_bound(v[id].begin(), v[id].end(), a[y]));
	v[id].insert(upper_bound(v[id].begin(), v[id].end(), a[x]), a[x]);
	swap(a[x], a[y]);
}
int main(){
	int n, q;
	scanf("%d%d", &n, &q);
	for (int i = 1; i <= n; i++){
		a[i] = i;
	}
	build(n);
	LL ans = 0;
	while (q--){
		int x, y;
		scanf("%d%d", &x, &y);
		if (x > y)
			swap(x, y);
		if (x == y)
			printf("%lld\n", ans);
		else{
			LL sub = query(x + 1, y - 1, a[x]);
			LL add = y - 1 - x - sub;
			ans -= sub;
			ans += add;
			add = query(x + 1, y - 1, a[y]);
			sub = y - 1 - x - add;
			ans += add;
			ans -= sub;
			if (a[x] < a[y])
				ans++;
			else
				ans--;
			printf("%lld\n", ans);
			update(x, y);
		}
	}
}


六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值