hdu1532 Drainage Ditches (网络流入门)&(EK算法模板)

本文介绍了一个典型的最大流问题——排水沟问题。通过构建复杂的排水网络,利用EK算法(Edmonds-Karp算法)来解决如何最大化从池塘到河流的排水速率的问题。文章提供了完整的代码实现,并解释了算法的基本思路。


题目大意:

其实就是最大流裸题。

求点1-m的最大流量。

Drainage Ditches

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15011    Accepted Submission(s): 7129


Problem Description
Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 
 

Input
The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
 

Output
For each case, output a single integer, the maximum rate at which water may emptied from the pond. 
 

Sample Input
5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10
 

Sample Output
50

思路:

直接上模板(EK算法)就好了。


代码如下:


#include <map>  
#include <set>  
#include <cmath>  
#include <queue>  
#include <vector>  
#include <cstdio>  
#include <cstring>  
#include <iostream>  
#include <algorithm>  
using namespace std;  
typedef long long LL;  
const int maxn=1e6+10;  
const int INF=0x3f3f3f3f;  
int cas=1,T;  
struct node  
{  
    int to,cap,rev;  
    node(){}  
    node(int a,int b,int c):to(a),cap(b),rev(c){}  
};  
vector<node>mp[maxn];  
bool vis[maxn];  
void addedge(int start,int to,int cap)  
{  
    mp[start].push_back(node(to,cap,mp[to].size()));  
    mp[to].push_back(node(start,0,mp[start].size()-1));  
}  
  
int DFS(int start,int end,int cap)  
{  
    if(start==end)return cap;  
    vis[start]=true;  
    int size=mp[start].size();  
    for(int i=0;i<size;i++)  
    {  
        node& temp=mp[start][i];  
        if(temp.cap<=0||vis[temp.to])continue;  
        int d=DFS(temp.to,end,min(cap,temp.cap));  
        if(d)  
        {  
            temp.cap-=d;  
            mp[temp.to][temp.rev].cap+=d;  
            return d;  
        }  
    }  
    return 0;  
}  
int maxflow(int start,int end)  
{  
    int flow=0;  
    int f=INF;  
    while(f)  
    {  
        memset(vis,false,sizeof(vis));  
        f=DFS(start,end,INF);  
        flow+=f;  
    }  
    return flow;  
}  
int main()  
{  
    int n,m;  
    while(scanf("%d%d",&n,&m)==2)  
    {  
        int u,v,w;  
        for(int i=0;i<n;i++)mp[i].clear();  
        while(n--)  
        {  
            scanf("%d%d%d",&u,&v,&w);  
            addedge(u,v,w);  
        }  
        int ans=maxflow(1,m);  
        printf("%d\n",ans);  
    }  
}  



内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值