import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
数据集的准备
from sklearn.model_selection import train_test_split
train=pd.read_csv('datas/house_data.csv')
y=train['SalePrice']
train1=train.drop(['Id','SalePrice'],axis=1)
X=pd.get_dummies(train1).reset_index(drop=True)
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=123)
模型测评
from sklearn.metrics import mean_squared_error
def benchmark(model,testset,label):
pred=model.predict(testset)
if pred[pred<0].shape[0]>0:
pri