创建 NumPy ndarray 对象
NumPy 用于处理数组,NumPy 中的数组对象称为 ndarray。
我们可以使用 array() 函数创建一个 NumPy ndarray 对象。
实例
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr)
print(type(arr))
运行实例

type(): 这个内置的 Python 函数告诉我们传递给它的对象的类型。像上面的代码一样,它表明 arr 是 numpy.ndarray 类型。
要创建 ndarray,我们可以将列表、元组或任何类似数组的对象传递给 array() 方法,然后它将被转换为 ndarray:
实例
使用元组创建 NumPy 数组:
import numpy as np
arr = np.array((1, 2, 3, 4, 5))
print(arr)
运行实例

数组中的维
数组中的维是数组深度(嵌套数组)的一个级别
**嵌套数组:**指的是将数组作为元素的数组。
0-D 数组
0-D 数组,或标量(Scalars),是数组中的元素。数组中的每个值都是一个 0-D 数组。
实例<

NumPy是处理数组的库,ndarray是其核心数据结构。可以使用array()函数从列表、元组等创建ndarray。数组的维度由嵌套数组的级别决定,从0-D(标量)到高维数组。ndim属性用于检查数组的维度。文章还展示了如何创建和操作不同维度的数组。
最低0.47元/天 解锁文章
1973

被折叠的 条评论
为什么被折叠?



