numpy.argsort详解

本文详细介绍了 numpy 中的 argsort 函数,该函数返回能够使输入数组按升序排列的索引数组。文章解释了参数含义及使用方法,并通过一维和二维数组的例子展示了如何使用该函数。此外还说明了在包含字段的数组中如何指定排序依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy.argsort详解

numpy.argsort(aaxis=-1kind='quicksort'order=None)[source]

Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters:

a : array_like

Array to sort.

axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

Returns:

index_array : ndarray, int

Array of indices that sort a along the specified axis. If a is one-dimensional, a[index_array] yields a sorted a.

See also

sort
Describes sorting algorithms used.
lexsort
Indirect stable sort with multiple keys.
ndarray.sort
Inplace sort.
argpartition
Indirect partial sort.

Notes

See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order is documented in sort.

Examples

One dimensional array:

>>> x = np.array([3, 1, 2]) >>> np.argsort(x) array([1, 2, 0]) 

Two-dimensional array:

>>> x = np.array([[0, 3], [2, 2]]) >>> x array([[0, 3],  [2, 2]]) 
>>> np.argsort(x, axis=0) # sorts along first axis (down) array([[0, 1],  [1, 0]]) 
>>> np.argsort(x, axis=1) # sorts along last axis (across) array([[0, 1],  [0, 1]]) 

Indices of the sorted elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) >>> ind (array([0, 1, 1, 0]), array([0, 0, 1, 1])) >>> x[ind] # same as np.sort(x, axis=None) array([0, 2, 2, 3]) 

Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')]) >>> x array([(1, 0), (0, 1)],  dtype=[('x', '<i4'), ('y', '<i4')]) 
>>> np.argsort(x, order=('x','y')) array([1, 0]) 
>>> np.argsort(x, order=('y','x')) array([0, 1])

posted on 2018-05-31 17:56 多一点 阅读(...) 评论(...) 编辑 收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值