如下图,设A为源点,求A到其他各所有一一顶点(B、C、D、E、F)的最短路径。线上所标注为相邻线段之间的距离,即权值。
(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)
Dijkstra无向图

算法执行步骤如下表:
1 INITIALIZE-SINGLE-SOURCE(G, s) //对每个顶点初始化 ,O(V)
2 S ←
3 Q ← V[G] //INSERT,O(1)
4 while Q ≠
5 do u ← EXTRACT-MIN(Q) //简单的O(V*V);二叉/项堆,和FIB-HEAP的话,则都为O(V*lgV)。
6 S ← S ∪{u}
7 for each vertex v ∈ Adj[u]
8 do RELAX(u, v, w) //简单方式:O(E),二叉/项堆,E*O(lgV),FIB-HEAP,E*O(1)。
最小优先队列三种实现方法:
1、利用从1至|V| 编好号的顶点,简单地将每一个d[v]存入一个数组中对应的第v项,
如上述DIJKSTRA(G,w,s)所示,Dijkstra 算法的运行时间为O(V^2+E)。
2、如果是二叉/项堆实现最小优先队列的话,EXTRACT-MIN(Q)的运行时间为O(V*lgV),
所以,Dijkstra 算法的运行时间为O(V*lgV+E*lgV),
若所有顶点都是从源点可达的话,O((V+E)*lgV)=O(E*lgV)。
当是稀疏图时,则E=O(V^2/lgV),此Dijkstra 算法的运行时间为O(V^2)。
3、采用斐波那契堆实现最小优先队列的话,EXTRACT-MIN(Q)的运行时间为O(V*lgV),
所以,此Dijkstra 算法的运行时间即为O(V*lgV+E)。
综上所述,此最小优先队列的三种实现方法比较如下:
EXTRACT-MIN + RELAX
I、 简单方式: O(V*V + E*1)
II、 二叉/项堆: O(V*lgV + |E|*lgV)
源点可达:O(E*lgV)
稀疏图时,有E=o(V^2/lgV),
=> O(V^2)
III、斐波那契堆:O(V*lgV + E)
当|V|<<|E|时,采用DIJKSTRA(G,w,s)+ FIB-HEAP-EXTRACT-MIN(Q),即斐波那契堆实现最小优先队列的话,
优势就体现出来了。