邻居子系统实现了IP层发包不感知MAC,即由邻居子系统实现了MAC头封装。MAC头信息包括:源MAC、目的MAC、协议类型,其中协议类型由上层指定,例如IPV4等等,源MAC地址是出口设备MAC地址(在路由表中确定出口设备),目的MAC是由邻居子系统提供的,大致可以猜到,邻居子系统会主动发起arp请求获取到mac地址,实现MAC封包。IP层发包最后会调用ip_finish_output2函数,我们从该函数入手分析邻居子系统。
ip_finish_output2函数
static inline int ip_finish_output2(struct sock *sk, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct rtable *rt = (struct rtable *)dst;
struct net_device *dev = dst->dev; //出口设备
unsigned int hh_len = LL_RESERVED_SPACE(dev);
struct neighbour *neigh;
u32 nexthop;
if (rt->rt_type == RTN_MULTICAST) {
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
} else if (rt->rt_type == RTN_BROADCAST)
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
/* Be paranoid, rather than too clever. */
if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
struct sk_buff *skb2;
skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
if (!skb2) {
kfree_skb(skb);
return -ENOMEM;
}
if (skb->sk)
skb_set_owner_w(skb2, skb->sk);
consume_skb(skb);
skb = skb2;
}
rcu_read_lock_bh();
nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);<span style="white-space:pre"> </span>//目的IP地址
neigh = __ipv4_neigh_lookup_noref(dev, nexthop); //根据目的IP查找邻居项是否存在
if (unlikely(!neigh))
neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); //如果不存在,则创建neigh项
if (!IS_ERR(neigh)) {
int res = dst_neigh_output(dst, neigh, skb); //调用邻居子系统封装MAC头,并且调用二层发包函数完成报文发送
rcu_read_unlock_bh();
return res;
}
rcu_read_unlock_bh();
net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
__func__);
kfree_skb(skb);
return -EINVAL;
}
首先会根据出口设备和目的IP地址,查找是否已经存在邻居项,如果没有则创建邻居项,然后通过dst_neigh_output发包,本文分析假设没有邻居项。 先邻居项的查找函数:
__ipv4_neigh_lookup_noref函数
static inline struct neighbour *__ipv4_neigh_lookup_noref(struct net_device *dev, u32 key)
{
return ___neigh_lookup_noref(&arp_tbl, neigh_key_eq32, arp_hashfn, &key, dev); //ipv4从arp_tbl中查找
}
___neigh_lookup_noref函数
static inline struct neighbour *___neigh_lookup_noref(
struct neigh_table *tbl,
bool (*key_eq)(const struct neighbour *n, const void *pkey),
__u32 (*hash)(const void *pkey,
const struct net_device *dev,
__u32 *hash_rnd),
const void *pkey,
struct net_device *dev)
{
struct neigh_hash_table *nht = rcu_dereference_bh(tbl->nht); //hash表,邻居数量大时加速
struct neighbour *n;
u32 hash_val;
hash_val = hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); //计算hash值
for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
n != NULL;
n = rcu_dereference_bh(n->next)) {
if (n->dev == dev && key_eq(n, pkey)) //dev相同并且pkey相同,这里pkey是IPV4地址
return n;
}
return NULL;
}
邻居表项查找比较简单,就是在hash表中查找匹配设备和目的IP地址的邻居表项,该函数支持IPV6, 可扩展性通过参数实现,接下来看下创建邻居表项的实现:
__neigh_create函数
struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
struct net_device *dev, bool want_ref)
{
u32 hash_val;
int key_len = tbl->key_len;
int error;
struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);<span style="white-space:pre"> </span>//创建邻居表项对象
struct neigh_hash_table *nht;
if (!n) {
rc = ERR_PTR(-ENOBUFS);
goto out;
}
memcpy(n->primary_key, pkey, key_len);
n->dev = dev;
dev_hold(dev);
/* Protocol specific setup. */
if (tbl->constructor && (error = tbl->constructor(n)) < 0) { //IPV4实际调用arp_constructor函数,设置output函数