1. app_process到zygote
zygote本身是一个Native应用程序,和驱动、内核均无关系,zygote是由init进行根据init.rc文件中的配置进行创建的,具体的配置代码如下:
1.1 zygote启动的init.rc文件定义
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
class main
socket zygote stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart media
onrestart restart netd
上面的代码中可以看出,zygote的原名是app_precess,在启动的时候是通过Linux下的pctrl系统调用将自己改名为zygote,app_process对应的源文件是App_main.cpp.
1.2 App_main.cpp的main函数
int main(int argc, char* const argv[])
{
// argc = 5, argv = “/system/bin/app_process -Xzygote /system/bin --zygote --start-system-server”
………….
AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
argc--; // 跳过第一个参数/system/bin/app_precess
argv++;
// -Xzygote为虚拟机参数,在启动虚拟机是传递到虚拟机
int i;
for (i = 0; i < argc; i++) {
if (argv[i][0] != '-') {
break;
}
if (argv[i][1] == '-' && argv[i][2] == 0) {
++i; // Skip --.
break;
}
runtime.addOption(strdup(argv[i]));
}
// Parse runtime arguments. Stop at first unrecognized option.
bool zygote = false;
bool startSystemServer = false;
bool application = false;
String8 niceName;
String8 className;
// 跳过 /system/bin参数
++i; // Skip unused "parent dir" argument.
// 根据参数进行赋值
while (i < argc) {
const char* arg = argv[i++];
if (strcmp(arg, "--zygote") == 0) {
zygote = true;
niceName = ZYGOTE_NICE_NAME;
} else if (strcmp(arg, "--start-system-server") == 0) {
startSystemServer = true;
} else if (strcmp(arg, "--application") == 0) {
application = true;
} else if (strncmp(arg, "--nice-name=", 12) == 0) {
niceName.setTo(arg + 12);
} else if (strncmp(arg, "--", 2) != 0) {
className.setTo(arg);
break;
} else {
--i;
break;
}
}
Vector<String8> args;
if (!className.isEmpty()) { // className未赋值,跳过
args.add(application ? String8("application") : String8("tool"));
runtime.setClassNameAndArgs(className, argc - i, argv + i);
} else {
// We're in zygote mode.
// 设置指令集、划分虚拟机使用的cache、将cache文件的权限设置为711,同时修改拥有者为root user
maybeCreateDalvikCache();
if (startSystemServer) {
args.add(String8("start-system-server"));
}
char prop[PROP_VALUE_MAX];
if (property_get(ABI_LIST_PROPERTY, prop, NULL) == 0) {
LOG_ALWAYS_FATAL("app_process: Unable to determine ABI list from property %s.",
ABI_LIST_PROPERTY);
return 11;
}
// 添加ABI_LIST
String8 abiFlag("--abi-list=");
abiFlag.append(prop);
args.add(abiFlag);
// In zygote mode, pass all remaining arguments to the zygote
// main() method.
for (; i < argc; ++i) {
args.add(String8(argv[i]));
}
}
// 修改线程名为zygote
if (!niceName.isEmpty()) {
runtime.setArgv0(niceName.string());
set_process_name(niceName.string());
}
// 根据得到的参数调用com.android.internal.os.ZygoteInit
// args这个vector中包含两个成员,args[0] = “start-system-server”
// args[1] = “—abi-list=xxx” xxx代码的是CPU的结构,比如armeabi-v7a, arm64-v8a
if (zygote) {
runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
} else if (className) {
runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
} else {
fprintf(stderr, "Error: no class name or --zygote supplied.\n");
app_usage();
LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
return 10;
}
}
2. AppRuntime分析
AppRuntime类的声明和实现都在App_main.cpp中,它是从AndroidRuntime类派生出来的,代码如下:
2.1 AndroidRuntime.cpp的start函数
// className = "com.android.internal.os.ZygoteInit", options包含两个string8成员
// args[0] = “start-system-server” args[1] = “—abi-list=xxx”, zygote = true
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
ALOGD(">>>>>> START %s uid %d <<<<<<\n",
className != NULL ? className : "(unknown)", getuid());
static const String8 startSystemServer("start-system-server");
/*
* 'startSystemServer == true' means runtime is obsolete and not run from
* init.rc anymore, so we print out the boot start event here.
*/
for (size_t i = 0; i < options.size(); ++i) {
if (options[i] == startSystemServer) {
/* track our progress through the boot sequence */
const int LOG_BOOT_PROGRESS_START = 3000;
LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START, ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
}
}
const char* rootDir = getenv("ANDROID_ROOT");
if (rootDir == NULL) {
rootDir = "/system";
if (!hasDir("/system")) {
LOG_FATAL("No root directory specified, and /android does not exist.");
return;
}
setenv("ANDROID_ROOT", rootDir, 1);
}
//const char* kernelHack = getenv("LD_ASSUME_KERNEL");
//ALOGD("Found LD_ASSUME_KERNEL='%s'\n", kernelHack);
/* start the virtual machine */
// 创建并启动虚拟机
JniInvocation jni_invocation;
jni_invocation.Init(NULL);
JNIEnv* env;
if (startVm(&mJavaVM, &env, zygote) != 0) {
return;
}
onVmCreated(env);
/*
* Register android functions.
*/
// 设置虚拟机的JNI环境
if (startReg(env) < 0) {
ALOGE("Unable to register all android natives\n");
return;
}
/*
* We want to call main() with a String array with arguments in it.
* At present we have two arguments, the class name and an option string.
* Create an array to hold them.
*/
// 调用JNI方法调用com.android.internal.os.ZygoteInit中的main方法
jclass stringClass;
jobjectArray strArray;
jstring classNameStr;
stringClass = env->FindClass("java/lang/String");
assert(stringClass != NULL);
strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL);
assert(strArray != NULL);
classNameStr = env->NewStringUTF(className);
assert(classNameStr != NULL);
env->SetObjectArrayElement(strArray, 0, classNameStr);
for (size_t i = 0; i < options.size(); ++i) {
jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());
assert(optionsStr != NULL);
env->SetObjectArrayElement(strArray, i + 1, optionsStr);
}
// 至此,strArray中包含三个成员,分别是
// strArray[0] = “com.android.internal.os.ZygoteInit”
// strArray[1] = “start-system-server”
// strArray[2] = “—abi-list=xxx”
/*
* Start VM. This thread becomes the main thread of the VM, and will
* not return until the VM exits.
*/
// className=”com.android.internal.os.ZygoteInit”,调用如下方法后,
// slashClassName=”com/android/internal/os/ZygoteInit”
char* slashClassName = toSlashClassName(className);
jclass startClass = env->FindClass(slashClassName);
if (startClass == NULL) {
ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
/* keep going */
} else {
// 找到ZygoteInit的main方法
jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
"([Ljava/lang/String;)V");
if (startMeth == NULL) {
ALOGE("JavaVM unable to find main() in '%s'\n", className);
/* keep going */
} else {
// 调用ZygoteInit的main方法
env->CallStaticVoidMethod(startClass, startMeth, strArray);
#if 0
if (env->ExceptionCheck())
threadExitUncaughtException(env);
#endif
}
}
free(slashClassName);
ALOGD("Shutting down VM\n");
if (mJavaVM->DetachCurrentThread() != JNI_OK)
ALOGW("Warning: unable to detach main thread\n");
if (mJavaVM->DestroyJavaVM() != 0)
ALOGW("Warning: VM did not shut down cleanly\n");
}
上述内容都是在Native层运行的,但是在调用ZygoteInit的main方法后,程序便会进入到Java的世界里面,下面来看看上面没有具体解释道的startVm和startReg方法。
2.2 AndroidRuntime.cpp的startVm函数
int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote)
{
JavaVMInitArgs initArgs;
……….
// 这里很多char buffer的定义,都去掉了
/*
下面很多代码都是用来设置JNI Check选项的。JNI Check顾名思义是指Native层调用JNI函数时,系统所做的检查工作。
例如,调用NewUTFString函数的时候,系统会检查传入的字符串是不是符合UTF-8的要求,JNI Check汉能检查资源是否被正确释放。
但是开启这个选项也是有副作用的,主要表现为:
1)因为检查工作比较耗时,所以会影响系统的运行速度
2)有些检查过于严格,例如上面的字符串检查,一旦报错,调用进程就会abort
所以JNI Check一般是在eng版本会设置,在正式发布的user版本就不设置该选项
*/
bool checkJni = false;
property_get("dalvik.vm.checkjni", propBuf, "");
if (strcmp(propBuf, "true") == 0) {
checkJni = true;
} else if (strcmp(propBuf, "false") != 0) {
/* property is neither true nor false; fall back on kernel parameter */
property_get("ro.kernel.android.checkjni", propBuf, "");
if (propBuf[0] == '1') {
checkJni = true;
}
}
ALOGD("CheckJNI is %s\n", checkJni ? "ON" : "OFF");
if (checkJni) {
/* extended JNI checking */
addOption("-Xcheck:jni");
/* with -Xcheck:jni, this provides a JNI function call trace */
//addOption("-verbose:jni");
}
property_get("dalvik.vm.execution-mode", propBuf, "");
if (strcmp(propBuf, "int:portable") == 0) {
executionMode = kEMIntPortable;
} else if (strcmp(propBuf, "int:fast") == 0) {
executionMode = kEMIntFast;
} else if (strcmp(propBuf, "int:jit") == 0) {
executionMode = kEMJitCompiler;
}
// 设置虚拟机产生的trace文件,主要用于分析系统问题,默认路劲可以通过adb shell连接手机执行getprop | grep trace查看
parseRuntimeOption("dalvik.vm.stack-trace-file", stackTraceFileBuf, "-Xstacktracefile:");
strcpy(jniOptsBuf, "-Xjniopts:");
if (parseRuntimeOption("dalvik.vm.jniopts", jniOptsBuf, "-Xjniopts:")) {
ALOGI("JNI options: '%s'\n", jniOptsBuf);
}
………..
/*
* The default starting and maximum size of the heap. Larger
* values should be specified in a product property override.
*/
parseRuntimeOption("dalvik.vm.heapstartsize", heapstartsizeOptsBuf, "-Xms", "4m");
parseRuntimeOption("dalvik.vm.heapsize", heapsizeOptsBuf, "-Xmx", "16m");
parseRuntimeOption("dalvik.vm.heapgrowthlimit", heapgrowthlimitOptsBuf, "-XX:HeapGrowthLimit=");
parseRuntimeOption("dalvik.vm.heapminfree", heapminfreeOptsBuf, "-XX:HeapMinFree=");
parseRuntimeOption("dalvik.vm.heapmaxfree", heapmaxfreeOptsBuf, "-XX:HeapMaxFree=");
parseRuntimeOption("dalvik.vm.heaptargetutilization",
heaptargetutilizationOptsBuf,
"-XX:HeapTargetUtilization=");
// 接下来很多都是设置虚拟机参数,具体可以自行查看
……….
/*
* When running with debug.generate-debug-info, add --generate-debug-info to
* the compiler options so that the boot image, if it is compiled on device,
* will include native debugging information.
*/
property_get("debug.generate-debug-info", propBuf, "");
if (strcmp(propBuf, "true") == 0) {
addOption("-Xcompiler-option");
addOption("--generate-debug-info");
addOption("-Ximage-compiler-option");
addOption("--generate-debug-info");
}
/*
* Retrieve the build fingerprint and provide it to the runtime. That way, ANR dumps will
* contain the fingerprint and can be parsed.
*/
parseRuntimeOption("ro.build.fingerprint", fingerprintBuf, "-Xfingerprint:");
initArgs.version = JNI_VERSION_1_4;
initArgs.options = mOptions.editArray();
initArgs.nOptions = mOptions.size();
initArgs.ignoreUnrecognized = JNI_FALSE;
/*
* Initialize the VM.
*
* The JavaVM* is essentially per-process, and the JNIEnv* is per-thread.
* If this call succeeds, the VM is ready, and we can start issuing
* JNI calls.
*/
// 初始化虚拟机
if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {
ALOGE("JNI_CreateJavaVM failed\n");
return -1;
}
return 0;
}
接下来看startReg函数:
2.3 AndroidRuntime.cpp的startReg函数
/*
* Register android native functions with the VM.
*/
/*static*/ int AndroidRuntime::startReg(JNIEnv* env)
{
/*
* This hook causes all future threads created in this process to be
* attached to the JavaVM. (This needs to go away in favor of JNI
* Attach calls.)
*/
// 设置Thread类的线程创建函数为javaCreateThreadEtc,androidSetCreateThreadFunc下面分析
androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);
ALOGV("--- registering native functions ---\n");
/*
* Every "register" function calls one or more things that return
* a local reference (e.g. FindClass). Because we haven't really
* started the VM yet, they're all getting stored in the base frame
* and never released. Use Push/Pop to manage the storage.
*/
env->PushLocalFrame(200);
// 注册JNI函数,gRegJNI是个全局数组,register_jni_procs下面分析
if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
env->PopLocalFrame(NULL);
return -1;
}
env->PopLocalFrame(NULL);
//createJavaThread("fubar", quickTest, (void*) "hello");
return 0;
}
androidSetCreateThreadFunc代码如下,非常简单,只是将gCreateThreadFn指向javaCreateThreadEtc
void androidSetCreateThreadFunc(android_create_thread_fn func)
{
gCreateThreadFn = func;
}
register_jni_procs则是简单的封装,调用数组元素的MProc函数
static int register_jni_procs(const RegJNIRec array[], size_t count, JNIEnv* env)
{
for (size_t i = 0; i < count; i++) {
if (array[i].mProc(env) < 0) {
#ifndef NDEBUG
ALOGD("----------!!! %s failed to load\n", array[i].mName);
#endif
return -1;
}
}
return 0;
}
其中gRegJNI定义如下,包含的是要注册到JNI中的函数
static const RegJNIRec gRegJNI[] = {
REG_JNI(register_com_android_internal_os_RuntimeInit),
REG_JNI(register_android_os_SystemClock),
REG_JNI(register_android_util_EventLog),
………..
}
REG_JNI是一个宏,定义如下:
#ifdef NDEBUG
#define REG_JNI(name) { name }
struct RegJNIRec {
int (*mProc)(JNIEnv*);
};
#else
#define REG_JNI(name) { name, #name }
struct RegJNIRec {
int (*mProc)(JNIEnv*);
const char* mName;
};
#endif
当调用array[i].mProc(env)就相当于调用相应的函数
3. Java World
上面分析到,在AndroidRuntime.cpp的start函数的最后调用CallStaticVoidMethod方法,该方法会调用到com.android.internal.os.ZygoteInit的main函数。
3.1 ZygoteInit.java的main函数
public static void main(String argv[]) {
try {
RuntimeInit.enableDdms(); // 开启DDMS功能
/// M: Added for BOOTPROF
//MTPROF_DISABLE = "1".equals(SystemProperties.get("ro.mtprof.disable"));
MTPROF_DISABLE = false;
// Start profiling the zygote initialization.
SamplingProfilerIntegration.start();
boolean startSystemServer = false;
String socketName = "zygote";
String abiList = null;
// 解析传入的argv参数,其中argv就是AndroidRuntime.cpp中的strArray
// strArray[0] = “com.android.internal.os.ZygoteInit”
// strArray[1] = “start-system-server”
// strArray[2] = “—abi-list=xxx”
for (int i = 1; i < argv.length; i++) {
if ("start-system-server".equals(argv[i])) {
startSystemServer = true;
} else if (argv[i].startsWith(ABI_LIST_ARG)) {
abiList = argv[i].substring(ABI_LIST_ARG.length());
} else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
socketName = argv[i].substring(SOCKET_NAME_ARG.length());
} else {
throw new RuntimeException("Unknown command line argument: " + argv[i]);
}
}
if (abiList == null) {
throw new RuntimeException("No ABI list supplied.");
}
// 注册Zygote使用的socket
registerZygoteSocket(socketName);
EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
SystemClock.uptimeMillis());
/// M: Added for BOOTPROF
addBootEvent(new String("Zygote:Preload Start"));
// 预加载类和相应资源
preload();
EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
SystemClock.uptimeMillis());
// Finish profiling the zygote initialization.
SamplingProfilerIntegration.writeZygoteSnapshot();
// Do an initial gc to clean up after startup
// 强制执行gc进行一次垃圾回收
gcAndFinalize();
// Disable tracing so that forked processes do not inherit stale tracing tags from
// Zygote.
Trace.setTracingEnabled(false);
/// M: Added for BOOTPROF
addBootEvent(new String("Zygote:Preload End"));
// startSystemServer为true
if (startSystemServer) {
// 启动system_server进程
startSystemServer(abiList, socketName);
}
Log.i(TAG, "Accepting command socket connections");
runSelectLoop(abiList);
closeServerSocket();
} catch (MethodAndArgsCaller caller) {
caller.run();
} catch (RuntimeException ex) {
Log.e(TAG, "Zygote died with exception", ex);
closeServerSocket();
throw ex;
}
}
3.2 ZygoteInit.java的registerZygoteSocket函数
// socketName=”zygote”
private static void registerZygoteSocket(String socketName) {
if (sServerSocket == null) {
int fileDesc;
// fullSocketName=”ANDROID_SOCKEY_zygote”
final String fullSocketName = ANDROID_SOCKET_PREFIX + socketName;
try {
// 这个应该是在之前有设置相应的环境变量,这里取出来
String env = System.getenv(fullSocketName);
fileDesc = Integer.parseInt(env);
} catch (RuntimeException ex) {
throw new RuntimeException(fullSocketName + " unset or invalid", ex);
}
try {
FileDescriptor fd = new FileDescriptor();
fd.setInt$(fileDesc); // 设置文件描述符
sServerSocket = new LocalServerSocket(fd); // 创建socket本地服务端
} catch (IOException ex) {
throw new RuntimeException(
"Error binding to local socket '" + fileDesc + "'", ex);
}
}
}
3.3 ZygoteInit.java的preload函数
static void preload() {
Log.d(TAG, "begin preload");
Log.i(TAG1, "preloadMappingTable() -- start ");
PluginLoader.preloadPluginInfo();
Log.i(TAG1, "preloadMappingTable() -- end ");
// 预加载位于system/etc/preload-class文件中指定的class
// preloadClasses()最后会通过Class.forName(String, Boolean, ClassLoader)来加载preloade-class中指定的class文件
// system/etc/preload_class文件在源码的位置为framework/base/preload-class
preloadClasses();
// 预加载资源,包括drawable和color资源
preloadResources();
// 预加载OpenGL
preloadOpenGL();
// 通过System.LoadLibrary()方法
// 预加载”android”, ”compiler-rt” 和 “jnigraphics”三个共享库
preloadSharedLibraries();
// 预加载文本资源
preloadTextResources();
// Ask the WebViewFactory to do any initialization that must run in the zygote process,
// for memory sharing purposes.
WebViewFactory.prepareWebViewInZygote();
Log.d(TAG, "end preload");
}
3.4 ZygoteInit.java的startSystemServer
private static boolean startSystemServer(String abiList, String socketName)
throws MethodAndArgsCaller, RuntimeException {
long capabilities = posixCapabilitiesAsBits(
OsConstants.CAP_BLOCK_SUSPEND,
OsConstants.CAP_KILL,
OsConstants.CAP_NET_ADMIN,
OsConstants.CAP_NET_BIND_SERVICE,
OsConstants.CAP_NET_BROADCAST,
OsConstants.CAP_NET_RAW,
OsConstants.CAP_SYS_MODULE,
OsConstants.CAP_SYS_NICE,
OsConstants.CAP_SYS_RESOURCE,
OsConstants.CAP_SYS_TIME,
OsConstants.CAP_SYS_TTY_CONFIG
);
/* Hardcoded command line to start the system server */
// 启动参数设置
String args[] = {
"--setuid=1000",
"--setgid=1000",
"--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1032,3001,3002,3003,3006,3007",
"--capabilities=" + capabilities + "," + capabilities,
"--nice-name=system_server",
"--runtime-args",
"com.android.server.SystemServer",
};
ZygoteConnection.Arguments parsedArgs = null;
int pid;
try {
// 解析参数,将上面的字符串数据转换成Arguments对象
parsedArgs = new ZygoteConnection.Arguments(args);
ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);
/* Request to fork the system server process */
// fork一个子进程,子进程就是system_server进程
pid = Zygote.forkSystemServer(
parsedArgs.uid, parsedArgs.gid,
parsedArgs.gids,
parsedArgs.debugFlags,
null,
parsedArgs.permittedCapabilities,
parsedArgs.effectiveCapabilities);
} catch (IllegalArgumentException ex) {
throw new RuntimeException(ex);
}
/* For child process */
// ford返回值等于0,表明是子进程即system_server所在分支代码
if (pid == 0) {
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
// system_server进程所做的工作,在这里会启动各种支撑系统运行的System server
handleSystemServerProcess(parsedArgs);
}
return true;
}
Zygeto进行fork后,分裂出一个system_server进程,这里主要介绍Zygote,system_server内容后面再介绍
3.5 ZygoteInit.java的runSelectLoop函数
private static void runSelectLoop(String abiList) throws MethodAndArgsCaller {
ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();
ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();
// sServerSocket是在1.3.2创建的Zygote本地服务端socket,现在将其添加到fds[0]中
fds.add(sServerSocket.getFileDescriptor());
peers.add(null);
while (true) {
StructPollfd[] pollFds = new StructPollfd[fds.size()];
for (int i = 0; i < pollFds.length; ++i) {
pollFds[i] = new StructPollfd();
pollFds[i].fd = fds.get(i);
pollFds[i].events = (short) POLLIN;
}
try {
// 通过select机制来处理轮询,提高性能,当有pooFds到来,进程会从这里唤醒,否则一直阻塞
Os.poll(pollFds, -1);
} catch (ErrnoException ex) {
throw new RuntimeException("poll failed", ex);
}
for (int i = pollFds.length - 1; i >= 0; --i) {
// 使用多路复用I/O模型,当有连接或者接收到对端的数据才继续往下执行
// 否则,使用continue,跳出循环后继续等待连接or接受数据
if ((pollFds[i].revents & POLLIN) == 0) {
continue;
}
if (i == 0) {
// 表示有新连接到来
ZygoteConnection newPeer = acceptCommandPeer(abiList);
peers.add(newPeer);
fds.add(newPeer.getFileDesciptor());
} else {
// 表示接收到对端发出的数据,调用runOnce()进行数据处理
boolean done = peers.get(i).runOnce();
if (done) {
peers.remove(i);
fds.remove(i);
}
}
}
}
}
runSelectLoop的主体是一个死循环,它将用作zygote的守护体存在
3.6 ZygoteInit.java的runOnce函数
代码如下,省略了大部分内容
boolean runOnce() throws MethodAndArgsCaller {
ZygoteConnection.Arguments parsedArgs = null;
…………..
try {
……….
// zygote需为新启动的应用程序生成独立的进程实体,这个工作就委托到forkAndSpecialize函数来做
pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids, parsedArgs.debugFlags, ex, parsedArgs.mountExternal, parsedArgs.seInfo, parsedArgs.niceName);
} catch (IOException var17) {
…………..
boolean ex1;
try {
// 父进程需要完成的内容
if(pid != 0) {
IoUtils.closeQuietly(childPipeFd);
childPipeFd = null;
ex1 = this.handleParentProc(pid, descriptors, serverPipeFd, parsedArgs);
return ex1;
}
// 子进程需要完成的内容
IoUtils.closeQuietly(serverPipeFd);
serverPipeFd = null;
this.handleChildProc(parsedArgs, descriptors, childPipeFd, newStderr);
ex1 = true;
} finally {
IoUtils.closeQuietly(childPipeFd);
IoUtils.closeQuietly(serverPipeFd);
}
return ex1;
}
}
3.7 Zygote.java的forkAndSpecialize函数
public static int forkAndSpecialize(int uid, int gid, int[] gids, int debugFlags,
int[][] rlimits, int mountExternal, String seInfo, String niceName, int[] fdsToClose,
String instructionSet, String appDataDir) {
VM_HOOKS.preFork();
int pid = nativeForkAndSpecialize(
uid, gid, gids, debugFlags, rlimits, mountExternal, seInfo, niceName, fdsToClose,
instructionSet, appDataDir);
// Enable tracing as soon as possible for the child process.
if (pid == 0) {
Trace.setTracingEnabled(true);
// Note that this event ends at the end of handleChildProc,
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "PostFork");
}
VM_HOOKS.postForkCommon();
return pid;
}
forkAndSpecialize函数实在“孵化”的同时将新创建的进程转换为目标Android应用程序。函数forkAndSpecialize包含三个步骤,分别是preFork、nativeForkAndSpecialize和postForkCommon。preFork通过JNI调用到dalvik_system_ZygoteHooks.cc中的ZygoteHooks_nativePreFork函数,在这个函数中会通过runtime->PreZygoteFork来进行前期初始化。
函数nativeForkAndSpecialize也是一个native方法,实现在com_android_internal_os_
Zygote_nativeForkAndSpecialize中,而之后又会进一步调用到FordAndSpecializeCommon方法。在FordAndSpecializeCommon方法中会通过Linux fork调用孵化出一个新的进程,然后调用到CallStaticVoidMethod这个JNI方法来执行一些孵化后的处理,但是这里并没有进行应用程序相关的业务,真正的业务执行是在runOnce中提到的handleChildProc中,之后的内容这里就不做解释了,后续在AMS中应该会提及。
http://blog4jimmy.com/2018/01/326.html

本文深入解析了Android系统中Zygote进程的启动流程及其如何通过fork机制创建system_server进程和其他应用进程,涵盖了从init.rc配置到Java世界的全过程。
1464

被折叠的 条评论
为什么被折叠?



