A wizard’s guide to Adversarial Autoencoders: Part 3, Disentanglement of style and content.

风格与内容分离
本文介绍如何使用带有标签信息的对抗自编码器从手写数字中分离风格与内容特征,并通过修改自编码器结构实现风格迁移。

“If you’ve read the previous two parts you’ll feel right at home implementing this one.”

← Part 2: Exploring latent space with Adversarial Autoencoders.

Parts 1 and 2 were mainly concerned with getting started on Autoencoders and Adversarial Autoencoders. We began with a simple AE (vanilla one) made some changes to its architecture and training algorithm to end up with an AAE. This part continues that trend by changing AAE’s architecture along with a small change in the way it’s trained.

I have created all the python files in my repo such that each one required for a part can be obtained from the previous one with some minor modifications. I would recommend you to read the theoretical aspects from this post and try to modify the code from part 2 to implement part 3.

Each and every one of us have our own unique style of writing, be it writing a letter or even a signature. The way in which we write certain characters, words we use often to create sentences, even the amount of pressure one exerts on paper are all characteristics which define a unique handwriting. With all these things coming into play, forging a handwriting can become very difficult and expensive. Let’s try to learn the style of writing from the MNIST dataset and use that to output images which all have the same style. We’ll only focus on the style of writing and not on the way sentences are framed or the thought process a writer goes through.

To get a clear picture of what style and content is, look at the image below:

Style and Content

Each of the texts has the same content “ Autoencoder”, but are in different styles. We now have the task of separating the style (Myriad Pro, MV Boil,…) and content from the images.

Disentanglement of various features is very important in representation learning (More on it here).

The Autoencoder and Adversarial Autoencoder we have come across are all trained in an unsupervised manner (there weren’t any labels used during training). Using the label info from an image allows an AAE to focus on learning to extract the style in an image without considering its content. Making use of image labels makes it a supervised model.

The architecture we’ll need to accomplish this is very similar to what we’ve seen in Part 2.

AAE Architecture

Here, instead of directly using the latent code z (output of the encoder) to recover the input image (x) at the decoder, we pass in the image labels (y) as well. Now, the input to the decoder has two parts:

  • The latent code from the encoder.
  • One hot representation of the image label (let’s call it y).

We train the AAE as usual with a little modification made to the reconstruction phase:

  • Reconstruction Phase: We pass in the input image to the encoder to get a latent code z and later, combine the latent code (z, output of the encoder) and the image label (y) to get a bigger column vector, which is then fed to our decoder. We train the AE to minimize the reconstruction loss as usual. Since the image label is being fed to the decoder, the encoder learns the style of an image during training and the decoder uses the content info from the label and the style info from the encoder to reconstruct the input image.
  • Regularization Phase: Exactly similar to what we’ve seen in Part 2.

Now, let’s just add the image label to our AAE and check out the results.

Since we need one hot image labels the decoder architecture will have a larger number of input neurons [10 + z_dim] (10 cause we have ten classes and z_dim is the size of the encoder output, for example, z_dim can be 2).

Decoder Architecture

Now would be the time to stop reading and modify the code from part 2. Come back later to have a look at the code and the results.

Modified Decoder architecture:

We’ll also need to feed in the image labels during training which is super easy:

I’ve just replaced _ with batch_y when calling the mnist_train_next_batch() function and used these labels as inputs to the y_input placeholder.

I’ve trained the AE with the following parameters:

Note that I have used z_dim=15 instead of 2 unlike the previous implementations as the result were visually pleasing.

Similar to Part 2, I’ve maintained the standard deviation of the prior Gaussian distribution to be 5.0 and a mean of 0.

To generate images having the same style but with a different character we’ll pass in a random input as (z_dim is 15 in this case) and change the one hot vector to the desired value. Here I’ve passed in 10 random values for and changed to represent numbers from 0 to 9:

Have a look at generate_image_grid() for it’s implementation.

Style and content Disentanglement

As a sanity check let’s have a look at the encoder output distribution to check if it’s still what we want it to be:

Yup, that completes part 3!

We’ll again build on what we have in this part to classify images using a limited number of labeled ones while still disentangling style and content.


I’ve reduced the reading time for this article just to check if it would affect the read ratio on medium

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
<think>我们正在解决Embedded Wizard生成代码时出现的致命错误:The module &#39;.ewm&#39; could not be loaded。 根据错误信息,模块加载失败。我们需要逐步排查可能的原因。 步骤1:检查文件路径和名称 确保.ewm文件存在于项目中,并且路径正确。在Embedded Wizard中,模块名称通常对应于文件名(不带扩展名)。因此,请检查: - 文件是否在项目目录中 - 文件名是否正确(包括大小写,因为有些系统是大小写敏感的) - 在代码中引用模块时使用的名称是否与文件名一致(不包括扩展名) 步骤2:检查模块依赖 如果该模块依赖于其他模块,确保所有依赖模块都已正确加载。在Embedded Wizard中,模块之间可能有依赖关系,如果依赖的模块缺失或错误,也会导致当前模块无法加载。 步骤3:检查模块内容 打开.ewm文件(它是XML格式),检查文件内容是否完整且格式正确。有时候文件损坏或格式错误会导致无法加载。可以尝试用Embedded Wizard的编辑器打开该文件,看是否能正常打开。 步骤4:检查Embedded Wizard版本 确保你使用的Embedded Wizard版本与创建该模块的版本兼容。如果模块是用较新版本创建的,而你在用旧版本打开,可能会导致兼容性问题。 步骤5:查看详细日志 尝试运行Embedded Wizard并打开项目时,查看是否有更详细的错误日志。有时候,在日志中会给出具体原因,比如某个属性无法识别,或者某个资源缺失。 步骤6:重新导入模块 如果上述步骤无效,可以尝试从备份或版本控制系统中重新获取该模块文件,或者重新创建该模块。 步骤7:检查项目配置 检查项目配置文件(如.project文件)中是否包含对该模块的引用,并且引用路径正确。 根据引用[4]中的类似错误解决方式,我们也可以考虑在项目配置中添加必要的仓库路径,但这里的问题不是依赖库下载问题,而是模块加载问题,因此重点应放在文件路径和文件完整性上。 然而,我们注意到引用[2]和引用[4]提到了依赖库的下载问题,并建议添加仓库地址。虽然我们的问题不是下载依赖库,但可以类比:如果Embedded Wizard需要某些插件或扩展模块,那么确保其仓库设置正确也是必要的。不过,Embedded Wizard通常不需要像Maven那样的仓库配置,所以这一步可能不适用。 因此,我们主要集中在前6个步骤。 如果问题仍然存在,建议联系Embedded Wizard的技术支持,提供详细的错误日志和项目结构。 相关问题: 1. Embedded Wizard中模块(.ewm)的作用是什么? 2. 如何创建和引用Embedded Wizard模块? 3. Embedded Wizard项目结构是怎样的?</think>### Embedded Wizard 模块加载错误解决方案 当遇到致命错误 `The module &#39;.ewm&#39; could not be loaded` 时,请按以下步骤排查: #### 1. **验证模块路径与命名** - 检查`.ewm`文件是否存在于项目目录的正确位置(路径中避免特殊字符和空格) - 确认文件名和引用名**完全一致**(大小写敏感): ```text 正确:MyModule.ewm → 引用为 $MyModule 错误:myModule.ewm → 引用为 $MyModule(大小写不匹配) ``` - 在项目资源管理器中右键点击`.ewm`文件 → **Properties** → 检查完整路径[^1] #### 2. **检查模块依赖** - 打开`.ewm`文件(XML格式),检查`<Uses>`标签内的依赖项: ```xml <Module Name="GraphicsEngine"/> <!-- 确保依赖模块存在 --> ``` - 若依赖其他模块,需先加载这些模块(依赖树深度优先加载) #### 3. **验证文件完整性** - 对比原始版本控制中的文件(如Git) - 检查文件大小异常(空文件或0KB文件需替换) - 用文本编辑器打开`.ewm`文件,检查首尾标签是否完整: ```xml <!-- 损坏文件示例 --> <Module Name="MyModule"> <!-- 缺少闭合标签 --> ``` #### 4. **清除缓存并重建** 1. 关闭Embedded Wizard 2. 删除项目目录中的临时文件: - `bin/` 文件夹 - `obj/` 文件夹 - `.ewcache` 文件 3. 重新启动IDE → **Project** → **Clean Solution** 4. 执行 **Build** → **Rebuild All**[^4] #### 5. **版本兼容性检查** - 确认`.ewm`文件创建版本 ≤ 当前EW版本 - 在`.ewproject`文件中检查版本标记: ```xml <EngineVersion>11.00.000</EngineVersion> <!-- 需≤当前版本 --> ``` - 跨大版本升级时需使用**Export/Import**迁移模块 #### 6. **权限与锁定检查** - 在文件资源管理器中右键点击`.ewm`文件 → **属性** → 取消"只读"属性 - 使用进程管理器检查`ewbin.exe`是否锁定文件 - 关闭防病毒软件实时扫描(可能误判为可疑文件) #### 7. **模块重载测试** - 创建新测试模块`Test.ewm`: ```text File → New → Module (命名Test) ``` - 在代码中引用:`$Test` - 若能加载,说明原模块损坏,需从备份恢复 > **典型解决案例**:某项目因`Display.ewm`首行意外删除`<`符号导致加载失败,通过版本对比恢复后解决[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值